Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent, modeling practical systems as interval systems is gaining more attention of control researchers due to various advantages of interval systems. This research work presents a new approach for reducing the high-order continuous interval system (HOCIS) utilizing improved Gamma approximation. The denominator polynomial of reduced-order continuous interval model (ROCIM) is obtained using modified Routh table, while the numerator polynomial is derived using Gamma parameters. The distinctive features of this approach are: (i) It always generates a stable model for stable HOCIS in contrast to other recent existing techniques; (ii) It always produces interval models for interval systems in contrast to other relevant methods, and, (iii) The proposed technique can be applied to any system in opposite to some existing techniques which are applicable to second-order and third-order systems only. The accuracy and effectiveness of the proposed method are demonstrated by considering test cases of single-inputsingle-output (SISO) and multi-input-multi-output (MIMO) continuous interval systems. The robust stability analysis for ROCIM is also presented to support the effectiveness of proposed technique.
Czasopismo
Rocznik
Tom
Strony
347--373
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wzory
Twórcy
autor
- Department of Electrical Electronics and Communication Engineering, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
autor
- Department of Electrical Engineering, Malaviya National Institute of Technology Jaipur, India
autor
- Department of Electrical Engineering, BIT Sindri, Dhanbad, Jharkhand
- Ingenium Research Group, University of Castilla-La Mancha, Spain
Bibliografia
- [1] A.S.S. Abadi, P.A. Hosseinabadi, S.Mekhilef and A. Ordys: A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems. Archives of Control Sciences, 30(3), (2020), 599-620, DOI: 10.24425/acs.2020.134679.
- [2] A. Gupta, R. Saini, and M. Sharma: Modelling of hybrid energy system-part i: Problem formulation and model development. Renewable Energy, 36(2), (2011), 459-465, DOI: 10.1016/j.renene.2010.06.035.
- [3] S. Singh, V. Singh, and V. Singh: Analytic hierarchy process based approximation of high-order continuous systems using tlbo algorithm. International Journal of Dynamics and Control, 7(1), (2019), 53-60, DOI: 10.1504/IJSCC.2020.105393.
- [4] J. Hu, Y. Yang, M. Jia, Y. Guan, C. Fu, and S. Liao: Research on harmonic torque reduction strategy for integrated electric drive system in pure electric vehicle. Electronics, 9(8), (2020), DOI: 10.3390/electronics9081241.
- [5] K. Takahashi, N. Jargalsaikhan, S. Rangarajan, A. M. Hemeida, H. Takahashi and T. Senjyu: Output control of three-axis pmsg wind turbine considering torsional vibration using h infinity control. Energies, 13(13), (2020), DOI: 10.3390/en13133474.
- [6] V. Singh, D.P.S. Chauhan, S.P. Singh, and T. Prakash: On time moments and markov parameters of continuous interval systems. Journal of Circuits, Systems and Computers, 26(3), (2017), DOI: 10.1142/S0218126617500384.
- [7] B. Pariyar and R.Wagle: Mathematical modeling of isolated wind-diesel-solar photo voltaic hybrid power system for load frequency control. arXiv preprint arXiv:2004.05616, (2020).
- [8] N. Karkar, K. Benmhammed, and A. Bartil: Parameter estimation of planar robot manipulator using interval arithmetic approach. Arabian Journal for Science and Engineering, 39(6), (2014), 5289-5295, DOI: 10.1007/s13369-014-1199-z.
- [9] F.P.G. Marquez: A new method for maintenance management employing principal component analysis. Structural Durability & Health Monitoring, 6(2), (2010), DOI: 10.3970/sdhm.2010.006.089.
- [10] F.P.G. Marquez: An approach to remote condition monitoring systems management. IET International Conference on Railway Condition Monitoring, (2006), 156-160, DOI: 10.1049/ic:20060061.
- [11] D. Li, S. Zhang, and Y. Xiao: Interval optimization-based optimal design of distributed energy resource systems under uncertainties. Energies, 13(13), (2020), DOI: 10.3390/en13133465.
- [12] A.K. Choudhary and S.K. Nagar: Order reduction in z-domain for interval system using an arithmetic operator. Circuits, Systems, and Signal Processing, 38(3), (2019), 1023-1038, DOI: 10.1007/s00034-018-0912-7.
- [13] A.K. Choudhary and S.K. Nagar: Order reduction techniques via routh approximation: a critical survey. IETE Journal of Research, 65(3), (2019), 365-379, DOI: 10.1080/03772063.2017.1419836.
- [14] V.P. Singh and D. Chandra: Model reduction of discrete interval system using dominant poles retention and direct series expansion method. In 5th International Power Engineering and Optimization Conference, (2011), 27-30, DOI: 10.1109/PEOCO.2011.5970421.
- [15] V. Singh and D. Chandra: Reduction of discrete interval system using clustering of poles with Padé approximation: a computer-aided approach. International Journal of Engineering, Science and Technology, 4(1), (2012), 97-105, DOI: 10.4314/ijest.v4i1.11S.
- [16] Y. Dolgin and E. Zeheb: On Routh-Pade model reduction of interval systems. IEEE Transactions on Automatic Control, 48(9), (2003), 1610-1612, DOI: 10.1109/TAC.2003.816999.
- [17] S.F. Yang: Comments on “On Routh-Pade model reduction of interval systems”. IEEE Transactions on Automatic Control, 50(2), (2005), 273-274, DOI: 10.1109/TAC.2004.841885.
- [18] Y. Dolgin: Author’s reply [to comments on ‘On Routh-Pade model reduction of interval systems’. IEEE Transactions on Automatic Control, 50(2), (2005), 274-275, DOI: 0.1109/TAC.2005.843849.
- [19] B. Bandyopadhyay, O. Ismail, and R. Gorez: Routh-Pade approximation for interval systems. IEEE Transactions on Automatic Control, 39(12), (1994), 2454-2456, DOI: 10.1109/9.362850.
- [20] Y.V. Hote, A.N. Jha, and J.R. Gupta: Reduced order modelling for some class of interval systems. International Journal of Modelling and Simulation, 34(2), (2014), 63-69, DOI: 10.2316/Journal.205.2014.2.205-5785.
- [21] B. Bandyopadhyay, A. Upadhye, and O. Ismail: /spl gamma/-/spldelta/routh approximation for interval systems. IEEE Transactions on Automatic Control, 42(8), (1997), 1127-1130, DOI: 10.1109/9.618241.
- [22] J. Bokam, V. Singh, and S. Raw: Comments on large scale interval system modelling using routh approximants. Journal of Advanced Research in Dynamical and Control Systems, 9(18), (2017), 1571-1575.
- [23] G. Sastry, G.R. Rao, and P.M. Rao: Large scale interval system modeling using Routh approximants. Electronics Letters, 36(8), (2000), 768-769, DOI: 10.1049/el:20000571.
- [24] M.S. Kumar and G. Begum: Model order reduction of linear time interval system using stability equation method and a soft computing technique. Advances in Electrical and Electronic Engineering, 14(2), (2016), 153-161, DOI: 10.15598/aeee.v14i2.1432.
- [25] S.R. Potturu and R. Prasad: Qualitative analysis of stable reduced order models for interval systems using mixed methods. IETE Journal ofResearch, (2018), 1-9, DOI: 10.1080/03772063.2018.1528185.
- [26] N. Vijaya Anand, M. Siva Kumar, and R. Srinivasa Rao: A novel reduced order modeling of interval system using soft computing optimization approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(7), (2018), 879-894, DOI: 10.1177/0959651818766811.
- [27] A. Abdelhak and M. Rachik: Model reduction problem of linear discrete systems: Admissibles initial states. Archives of Control Sciences, 29(1), (2019), 41-55, DOI: 10.24425/acs.2019.127522.
- [28] M. Buslowicz: Robust stability of a class of uncertain fractional order linear systems with pure delay. Archives of Control Sciences, 25(2), (2015), 177-187.
- [29] S.R. Potturu and R. Prasad: Model order reduction of LTI interval systems using differentiation method based on Kharitonov’s theorem. IETE Journal of Research, (2019), 1-17, DOI: 10.1080/03772063.2019.1686663.
- [30] E.-H. Dulf: Simplified fractional order controller design algorithm. Mathematics, 7(12), (2019), DOI: 10.3390/math7121166.
- [31] Y. Menasria, H. Bouras, and N. Debbache: An interval observer design for uncertain nonlinear systems based on the ts fuzzy model. Archives of Control Sciences, 27(3), (2017), 397-407, DOI: 10.1515/acsc-2017-0025.
- [32] A. Khan, W. Xie, L. Zhang, and Ihsanullah: Interval state estimation for linear time-varying (LTV) discrete-time systems subject to component faults and uncertainties. Archives of Control Sciences, 29(2), (2019), 289-305, DOI: 10.24425/acs.2019.129383.
- [33] N. Akram, M. Alam, R. Hussain, A. Ali, S. Muhammad, R. Malik, and A.U. Haq: Passivity preserving model order reduction using the reduce norm method. Electronics, 9(6), (2020), DOI: 10.3390/electronics9060964.
- [34] K. Kumar Deveerasetty and S. Nagar: Model order reduction of interval systems using an arithmetic operation. International Journal of Systems Science, (2020), 1-17, DOI: 10.1080/00207721.2020.1746433.
- [35] K.K. Deveerasetty, Y. Zhou, S. Kamal, and S.K. Nagar: Computation of impulse-response gramian for interval systems. IETE Journal of Research, (2019), 1-15, DOI: 10.1080/03772063.2019.1690592.
- [36] P. Dewangan, V. Singh, and S. Sinha: Improved approximation for SISO andMIMOcontinuous interval systems ensuring stability. Circuits, Systems, and Signal Processing, (2020), 1-12, DOI: 10.1007/s00034-020-01387-w.
- [37] M.S. Kumar, N.V. Anand, and R.S. Rao: Impulse energy approximation of higher-order interval systems using Kharitonov’s polynomials. Transactions of the Institute of Measurement and Control, 38(10), (2016), 1225-1235, DOI: 10.1177/0142331215583326.
- [38] S.K. Mangipudi and G. Begum: A new biased model order reduction for higher order interval systems. Advances in Electrical and Electronic Engineering, (2016), DOI: 10.15598/aeee.v14i2.1395.
- [39] V.L. Kharitonov: The asymptotic stability of the equilibrium state of a family of systems of linear differential equations. Differentsial’nye Uravneniya, 14(11), (1978), 2086-2088.
- [40] M. Sharma, A. Sachan and D. Kumar: Order reduction of higher order interval systems by stability preservation approach. In 2014 International Conference on Power, Control and Embedded Systems (ICPCES), (2014), 1-6.
- [41] G. Sastry and P.M. Rao: A new method for modelling of large scale interval systems. IETE journal of research, 49(6), (2003), 423-430, DOI: 10.1080/03772063.2003.11416366.
Uwagi
1. The work reported herewith has been financially by the Dirección General de Universidades, Investigación e Innovación of Castilla-La Mancha, under Research Grant ProSeaWind project (Ref.: SBPLY/ 19/180501/000102)
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d72ba73-09c5-4e75-91ef-4677576c5d15