PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semi-Continuous Anaerobic Digestion of Water Hyacinth with Different Volatile Solid Levels for Biogas Production – A Mesocosm Experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water hyacinth (WH) biomass is one of the popular materials in the Vietnamese Mekong Delta, a potential substrate for biogas production. The effectiveness of utilizing WH for producing biogas under anaerobic digestion was demonstrated in the previous studies, but the research was focused on the loading rate of about 1.0% volatile solid (VS). Therefore, in the present study, a semi-continuous anaerobic digestion experiment was conducted with the five levels of VS, including 1.0%VS, 1.5%VS, 2.0%VS, 2.5%VS, and 3.0%VS, to examine how loaded VS can affect biogas production. Each treatment was designed with three replications over 60 days. The measured parameters included pH, temperature (Temp; °C), redox potential (Eh; mV), daily produced biogas volume (L), cumulative biogas volume (L), and methane (CH4) concentration (%) during the 60 days of the experiment. The obtained results showed that pH, tempt, and Eh parameters did not negatively affect biogas production. However, the volume of daily biogas in the treatment of 3.0%VS was higher than in other treatments. In addition, the cumulative biogas volume in the treatment of 3.0%VS was the highest and significantly different between all reactors (p<0.05). Meanwhile, the treatment of 1.0%VS was known with the lowest values. The study explored that the volume of biogas could be increased when the organic loading rate VS is increased.
Rocznik
Strony
230--237
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, Campus II, 3-2 Str., Xuan Khanh Ward, Ninh Kieu District, 94000, Cantho, Vietnam
  • Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, Campus II, 3-2 Str., Xuan Khanh Ward, Ninh Kieu District, 94000, Cantho, Vietnam
  • Department of Environmental Sciences, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyomachi, 852-8521, Nagasaki, Japan
Bibliografia
  • 1. Aggarangsi P., Tippayawong N., Moran J.C., Rerkkriangkrai P. 2013. Overview of Livestock Biogas Technology Development and Implementation in Thailand. Energy for Sustainable Development, 17, 371–377.
  • 2. Anthony A., Ali M., Muhammad N., Karin G. 2019. A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency. Processes, 7, 504, 2–19.
  • 3. APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21st edition.; American Public Health Association (APHA): Washington, DC, USA.
  • 4. Carina C.G., Petersen C.M. 2007. Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manage, 27, 117–129.
  • 5. Cong N.V., Thanh T.V., Kha L.T.M., Hoang N.X. 2022. Water lettuce (Pistia stratiotes L.) as a potential material for biogas production. Journal of ecological engineering, 23(6), 182–188.
  • 6. Khanh H.C. 2014. Assessment of biogas production ability of water hyacinth and pig manure in semi-continuous digestion. Master thesis in Environment Sciences. Can Tho University, 96. (In Vietnamese)
  • 7. Li J., Wei L., Duan Q., Hu G., Zhang G. 2014. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. Bioresource Technology, 156, 307–313.
  • 8. Naik L., Gebreegziabher Z., Tumwesige V., Balana B.B., Mwirigi J., Austin G. 2014. Factors determining the stability and productivity of small-scale anaerobic digesters. Biomass Bioenergy, 70, 51–57.
  • 9. Nam T.S., Chi N.P., Chiem N.H., Viet L.H., Ngan N.V.C., Kjeld I. 2015c. Effect of biological pretreatment of water hyacinth on biogas production in batch anaerobic digestion with pig manure. Journal Can Tho University. Topics: Environment and Climate Change, 102–110 (in Vietnamese)
  • 10. Nam T.S., Kha L.T.M., Khanh H.V., Thao H.V., Ngan N.V.C., Chiem N.H., Viet L.H., Kjeld I. 2017. The possibility of producing biogas from rice straw and water hyacinth at different VS concentration in batch anaerobic experiment. Journal of Can Tho University. Topics: Environment and Climate Change, 1, 93–99. (in Vietnamese)
  • 11. Nam T.S., Thao H.V., Khanh H.C., Ngan N.V.C., Chiem N.H., Viet L.H., Ingvorsen K. 2015b. Evaluation the possibility of using rice straw and water hyacinth in semi continuous anaerobic fermentation – the application on farm scale polyethylene biogas digesters. Journal Can Tho University. Part A: Natural Science, Technology and Environment, 36, 27–35. (in Vietnamese)
  • 12. Nam T.S., Thao H.V., Khanh, H.C., Ngan, N.V.C., Viet, L.H., Chiem, N.H., Ingvorsen, K. 2015a. The components of volatile fatty acids in semi-continuous anaerobic co-digestion of rice straw and water hyacinth and pig manure. Journal of Science and Technology, 53(3A), 229–234.
  • 13. Ngan N.V.C., Chan F.M.S., Nam T.S., Thao H.V., Maguyon-Detras M.C., Hung D.V., Cuong D.M., Hung N.V. 2020. Chapter 5: Anaerobic Digestion of Rice Straw for Biogas Production. In: Sustainable Rice Straw Management. Gummert M., Hung N.V., Chivenge P., Douthwaite B. (Eds). Springer, 65–92.
  • 14. Ngan N.V.C., Hong M.H., Phan N.L., Nguyen T.N.L., Pham C.M., Kieu T.N., Pham M.T. 2015. Co-benefits from applying co-digester’s bio-slurry to farming activities in the Mekong Delta. Health environment, 1, 30–44.
  • 15. Ngan N.V.C., Thanh T.N., Loc N.H., Nguon N.T., Phuc L.N., Tan N.T.N. 2012. The possibility of using water hyacinth and straw as raw materials biogas. Journal of Can Tho University, 22a, 213–221 (in Vietnamese with English abstract).
  • 16. Nigam J.N. 2002. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. Journal of Biotechnology, 97, 107–116.
  • 17. Oritate F., M. Nakamura, D. P. Nguyen, H. V. B. Dang, K. D. Nguyen, Y. Yuyama, M. Yamaoka M., Kitagawa I., Sakoda A., Mochidzuki, K. 2016. Feasibility for Use of Digested Slurry by the Pouring Method in Paddy Fields of Southern Vietnam. Paddy and Water Environment, 14, 429–438.
  • 18. Raja S.A., Lee C.L.R. 2012. Biomethanation of water hyacinth using additives under forced mixing in a bio reactor. Int. J. Chem. Res., 4 (2), 15–24.
  • 19. Verma V.K., Singh Y.P., Rai J.P.N. 2007. Biogas production from plant biomass used for phytoremedia¬tion of industrial wastes. Bioresource Technology, 98 (8), 1664–1669.
  • 20. Vongvichiankul C., Deebao J., Khongnakorn W. 2017. Relationship between pH, Oxidation Reduction Potential (ORP) and Biogas Production in Mesophilic Screw Anaerobic Digester. Energy Procedia, 138, 877–882.
  • 21. Yadvika., Santosh., Sreekrishnan T.R., Kohli S., Rana V. 2004. Enhancement of biogas production from solid substrates using different techniques –– a review. Bioresource Technology, 95 (1), 1–10.
  • 22. Ye J., Li D., Sun Y., Wang G., Yuan Z., Zhen F., Wang Y. 2013. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Management, 33, 2653–2658.
  • 23. Zhang L.X., Wang C.B., Song B. 2013. Carbon emission reduction potential of a typical household biogas system in rural China. Journal Clean Production, 47, 415–421.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d6fea84-fb68-45b8-a4ee-9e3452ff3c12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.