Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove a new sharp correlation inequality for sums of i.i.d. square integrable lattice distributed random variables. We also apply it to establish an almost sure version of the local limit theorem for i.i.d. square integrable random variables taking values in an arbitrary lattice. This extends a recent similar result jointly obtained with Giuliano-Antonini under a slightly stronger absolute moment assumption (of order 2+u with u > 0). The approach used to treat the case u > 0 breaks down when u = 0. Mac- Donald’s concept of the Bernoulli part of a random variable is used in a crucial way to remedy this.
Czasopismo
Rocznik
Tom
Strony
79--98
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- C.N.R.S. IRMA, Université Louis-Pasteur, 7 rue René Descartes, 67084-Strasbourg Cedex, France
Bibliografia
- [1] I. Berkes and E. Csaki, A universal result in almost sure central limit theory, Stoch. Process. Appl. 94 (2001), pp. 105-134.
- [2] M. Denker and S. Koch, Almost sure local limit theorems, Statist. Neerlandica 56 (2) (2002), pp. 143-151.
- [3] R. Giuliano-Antonini and M. Weber, The intersective ASCLT, Stochastic Anal. Appl. 22 (4) (2004), pp. 1009-1025.
- [4] R. Giuliano-Antonini and M. Weber, Almost sure local limit theorems with rate, inrevision to Stochastic Anal. Appl.
- [5] B. V. Gnedenko, Course in the Theory of Probability, 5th edition, Nauka, Moscow 1967. English translation of 4th edition: Chelsea, New York.
- [6] I. A. Ibragimov and Y. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing Groningen, The Netherlands, 1971.
- [7] M. Kac, R. Salem and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63 (1948), pp. 235-243.
- [8] D. MacDonald, A local limit theorem for large deviations of sums of independent, nonidentically distributed random variables, Ann. Probab. 7 (3) (1979), pp. 526-531.
- [9] D. MacDonald and B. Davis, An elementary proof of the local central limit theorem, J. Theoret. Probab. 8 (3) (1995), pp. 695-701.
- [10] V. V. Petrov, Sums of Independent Random Variables, Ergeb. Math. Grenzgeb. 82 (1975).
- [11] M. Weber, Dynamical Systems and Processes, IRMA Lect. Math. Theor. Phys. 14 (2009), xiii+761pp.
- [12] M. Weber, On representation of integers, submitted to publication.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d67e9f5-a29c-46b2-a913-1187e621d3da