PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimating the 3-D spatial distribution of mechanical properties of rock by seismic data and well logs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rock mechanical properties influence the selection of drilling parameters, optimized drilling trajectory, and appropriate hydraulic fracturing intervals. Estimating the 3-D spatial distribution of these geomechanical properties at the reservoir scale is a challenging task, especially in the case of limited data only at the well locations. Advanced geostatistical techniques can be utilized to represent a reservoir’s inherent spatial variation more realistically. In this study, we investigate the spatial variability of rock mechanical properties, including Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio, as major constituents of the reservoir geomechanical model. The data are extracted from a hydrocarbon field located southwest of Iran and consist of forty wells. We first build a 1-D model of rock elastic moduli at each well by integrating petrophysical and core-based laboratory measurements and then develop a corresponding 3-D model using geostatistical simulation techniques. Thereafter, 3-D seismic data are employed to optimize the geomechanical model. Results show that the integration of well logs with seismic data increases the accuracy of field-wise 3-D elastic moduli models. Furthermore, we used various co-simulation techniques to demonstrate the improving effect of complementary data in constructing a more realistic reservoir geomechanical model.
Czasopismo
Rocznik
Strony
2089--2106
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Simulation and Data Processing Laboratory, School of Mining, College of Engineering, University of Tehran, Tehran, Iran
  • Department of Engineering Geology, School of Geology, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran
  • Halliburton Consulting, Mumbai 400063, Maharashtra, India
autor
  • Geologix Limited, Dynasty Building, Wing A, Level 4, Andheri Kurla Road, Andheri (E), Mumbai 400059, Maharashtra, India
  • Geosciences, Environment and Geomatics Laboratory (GEG), Department of Earth Sciences, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
  • MARE-Marine and Environmental Sciences Centre - Sedimentary Geology Group, Department of Earth Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
Bibliografia
  • 1. Adam L, Batzle M, Brevik I (2006) Gassmann’s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophysics 71(6):F173–F183
  • 2. Ameen MS, Smart BGD, Somerville JMC, Hammilton S, Naji NA (2009) Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Mar Pet Geol 26(4):430–444
  • 3. Arianfar A, Khedri B, Haghighi M, Golalzadeh A, Poladzadeh M, Mehdipour Z (2007) Case history: seismic facies analysis based on 3d multiattribute volume classification in shadegan oilfield-asmari reservoir, Iran. In: SPE/EAGE reservoir characterization and simulation conference, Abu Dhabi, UAE, October 2007. SPE-111078-MS
  • 4. Asef MR, Najibi AR (2013) The effect of confining pressure on elastic wave velocities and dynamic to static Young’s modulus ratio. Geophysics 78(3):D135–D142
  • 5. Avarjani S, Mahboubi A, Moussavi-Harami R, Amiri-Bakhtiar H, Brenner RL (2015) Facies, depositional sequences, and biostratigraphy of the Oligo-Miocene Asmari Formation in Marun oilfield, North Dezful Embayment, Zagros Basin, SW Iran. Palaeoworld 24(3):336–358
  • 6. Baig A, Viegas G, Gallagher J, Urbancic T, von Lunen E (2015) Constraining geomechanical models by using microseismic-derived fractures from source mechanisms. Lead Edge 34(8):912–916
  • 7. Boisvert JB, Clayton VD (2011) Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances. Comput Geosci 37(4):495–510
  • 8. Bordenave ML, Burwood R (1990) Source rock distribution and maturation in the Zagros orogenic belt: provenance of the Asmari and Bangestan reservoir oil accumulations. Org Geochem 16(1–3):369–387
  • 9. Brotons V, Tomás R, Ivorra S, Grediaga A (2014) Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julián’s stone. Bull Eng Geol Environ 73(3):791–799
  • 10. Chiles JP, Delfiner P (2009) Geostatistics: modeling spatial uncertainty. Wiley, New York
  • 11. Christaras B, Auger F, Mosse E (1994) Determination of the moduli of elasticity of rocks. Comparison of the ultrasonic velocity and mechanical resonance frequency methods with direct static methods. Mater Struct 27(4):222–228
  • 12. Daraei M, Amini A, Ansari M (2015) Facies analysis and depositional environment study of the mixed carbonate–evaporite Asmari Formation (Oligo-Miocene) in the sequence stratigraphic framework, NW Zagros, Iran. Carbonates Evaporites 30(3):253–272
  • 13. Das B, Chatterjee R, Singha DK, Kumar R (2017) Post-stack seismic inversion and attribute analysis in shallow offshore of Krishna-Godavari basin, India. J Geol Soc India 90(1):32–40
  • 14. Eissa EA, Kazi A (1988) Relation between static and dynamic Young’s moduli of rocks. Int J Rock Mech Min Sci Geomech Abstr 25(6):479–482
  • 15. Eladj S, Doghmane MZ, Lounissi TK, Djeddi M, Tee KF, Djezzar S (2022) 3D geomechanical model construction for wellbore stability analysis in Algerian Southeastern petroleum field. Energies 15(20):7455
  • 16. Fatemi Aghda SM, Kianpour M, Mohammadi M (2018) Estimation of uniaxial compressive strength and modulus of deformability of the Asmari Limestone using Neuro-Fuzzy system. Iran J Sci Technol Trans Sci 42:2005–2020
  • 17. Fjær E, Stroisz AM, Holt RM (2013) Elastic dispersion derived from a combination of static and dynamic measurements. Rock Mech Rock Eng 46(3):611–618
  • 18. Fjar Erling RM, Holt RM, Raaen AM, Horsrud P (2008) Petroleum related rock mechanics. Elsevier, Amsterdam
  • 19. Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44(1):1–13
  • 20. Gharechelou S, Amini A, Bohloli B, Swennen R (2020) Relationship between the sedimentary microfacies and geomechanical behawior of the Asmari Formation carbonates, southwestern Iran. Mar Pet Geol 116:104306
  • 21. Ghasemi Tootkaboni M, Ebadati N, Naderi A (2021) 3D simulation of a giant oilfield in calcareous formations and scrutiny study of the interaction of the calculated parameters (Asmari formation in Maroon oilfield, Iran). Arab J Geosci 14(9):799
  • 22. Haghnejad A, Ahangari K, Noorzad A, Minaeian B (2013) Prediction relations between physical and mechanical properties of rocks: a case study of Asmari Formation in Iran. Int J Geosci Res 1(1):1–8
  • 23. Hengl T, Budiman M, Michael G (2009) A geostatistical analysis of geostatistics. Scientometrics 80(2):491–514
  • 24. Hudson JA, Harrison JP (2000) Engineering rock mechanics: an introduction to the principles. Elsevier, Oxford
  • 25. Isaaks EH (1989) Applied geostatistics. Oxford University Press, Oxford
  • 26. Jenkins C, Ouenes A, Zellou A, Wingard J (2009) Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models. AAPG Bull 93(11):1597–1608
  • 27. Khazaie E, Noorian Y, Kavianpour M, Moussavi-Harami R, Mahboubi A, Omidpour A (2022a) Sedimentological and diagenetic impacts on porosity systems and reservoir heterogeneities of the Oligo-Miocene mixed siliciclastic and carbonate Asmari reservoir in the Mansuri oilfield, SW Iran. J Pet Sci Eng 213:110435
  • 28. Khazaie E, Noorian Y, Moussavi-Harami R, Mahboubi A, Kadkhodaie A, Omidpour A (2022b) Electrofacies modeling as a powerful tool for evaluation of heterogeneities in carbonate reservoirs: a case from the Oligo-Miocene Asmari Formation (Dezful Embayment, southwest of Iran). J Afr Earth Sci 195:104676
  • 29. Knotters M, Brus DJ, Voshaar JO (1995) A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma 67(3–4):227–246
  • 30. Latimer RB, Davidson R, van Riel P (2000) An interpreter’s guide to understanding and working with seismic-derived acoustic impedance data. Lead Edge 19(3):242–256
  • 31. Leta FR, Clua E, Biondi M, Pacheco T, do Socorro de Souza M (2013) An automatic process to identify features on boreholes data by image processing techniques. In: Öchsner A, Altenbach H (eds) Experimental and Numerical Investigation of Advanced Materials and Structures. Springer, Cham, pp 249–262
  • 32. Leta FR, Clua E, Barboza DC, Gazolla JGFM, Biondi M, do Souza MS (2014) Real-time visualization and geometry reconstruction of large oil and gas boreholes based on caliper database. In: Leta FR (ed) Visual Computing. Springer, Berlin, Heidelberg, pp 239–254
  • 33. Li X, Wang B, Hu Q, Yapanto LM, Zekiy AO (2021) Application of artificial neural networks and fuzzy logics to estimate porosity for Asmari formation. Energy Rep 7:3090–3098
  • 34. Lines LR, Ulrych TJ (1977) The old and the new in seismic deconvolution and wavelet estimation. Geophys Prospect 25(3):512–540
  • 35. Monjezi N, Amirshahkarami M, Bakhtiar HA, Shirazi MPN, Mirzaee A (2019) Palaeoecology and microfacies correlation analysis of the Oligocene-Miocene Asmari formation, in the Gachsaran oil field, Dezful Embayment, Zagros Basin, Southwest Iran. Carbonates Evaporites 34(4):1551–1568
  • 36. Moradi M, Moussavi-Harami R, Mahboubi A, Khanehbad M, Ghabeishavi A (2017) Rock typing using geological and petrophysical data in the Asmari reservoir, Aghajari Oilfield, SW Iran. J Pet Sci Eng 152:523–537
  • 37. Movahed Z, Junin R, Amiri Bakhtiari H, Safarkhanlou Z, Movahed AA, Alizadeh M (2015) Introduction of sealing fault in Asmari reservoir by using FMI and RFT in one of the Iranian naturally fractured oil fields. Arab J Geosci 8(12):10919–10936
  • 38. Nadjafi M, Mahboubi A, Moussavi-Harami R, Mirzaee R (2004) Depositional history and sequence stratigraphy of outcropping Tertiary carbonates in the Jahrum and Asmari formations, Shiraz area (SW Iran). J Pet Geol 27(2):179–190
  • 39. Najibi AR, Ghafoori M, Lashkaripour GR, Asef MR (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J Pet Sci Eng 126:78–82
  • 40. Nazarpour A, Shadizadeh SR, Zargar G (2014) Geostatistical modeling of spatial distribution of porosity in the Asmari Reservoir of Mansuri oil field in Iran. Pet Sci Technol 32(11):1274–1282
  • 41. Nezhad HK, Tabatabaei H (2017) Simulation of petrophysical parameters of Asmari reservoir using SGS method in mansuri oil field, Southwest Iran. Open J Geol 7(8):1188–1199
  • 42. Noorian Y, Moussavi-Harami R, Mahboubi A, Kadkhodaie A, Omidpour A (2020) Assessment of heterogeneities of the Asmari reservoir along the Bibi Hakimeh anticline using petrophysical and sedimentological attributes: southeast of Dezful Embayment, SW Iran. J Pet Sci Eng 193:107390
  • 43. Nunes R, Soares A, Azevedo L, Pereira P (2017) Geostatistical seismic inversion with direct sequential simulation and co-simulation with multi-local distribution functions. Math Geosci 49(5):583–601
  • 44. Omidpour A, Mahboubi A, Moussavi-Harami R, Rahimpour-Bonab H (2022) Effects of dolomitization on porosity–Permeability distribution in depositional sequences and its effects on reservoir quality, a case from Asmari Formation, SW Iran. J Pet Sci Eng 208(A):109348
  • 45. Parvizi S, Kharrat R, Asef MR, Jahangiry B, Hashemi A (2015) Prediction of the shear wave velocity from compressional wave velocity for gachsaran formation. Acta Geophys 63(5):1231–1243
  • 46. Pyrcz MJ, Deutsch CV (2014) Geostatistical reservoir modeling. Oxford University Press, Oxford
  • 47. Russell BH (1988) Introduction to seismic inversion methods. Society of Exploration Geophysicists, Tulsa
  • 48. Sachpazis CI (1990) Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bull Int Assoc Eng Geol 42(1):75–83
  • 49. Sayers CM, Schutjens PM (2007) An introduction to reservoir geomechanics. Lead Edge 26(5):597–601
  • 50. Smith TM, Sondergeld CH, Rai CS (2003) Gassmann fluid substitutions: a tutorial. Geophysics 68(2):430–440
  • 51. Soleimani B, Zahmatkesh I, Sheikhzadeh H (2020) Electrofacies analysis of the Asmari reservoir, Marun oil field, SW Iran. Geosci J 24(2):195–207
  • 52. Taner MT, Koehler F, Sheriff RE (1979) Complex seismic trace analysis. Geophysics 44(6):1041–1063
  • 53. Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton
  • 54. Wang YQ, Wang Q, Lu WK, Ge Q, Yan XF (2022) Seismic impedance inversion based on cycle-consistent generative adversarial network. Pet Sci 19(1):147–161
  • 55. Yongzhong XU, Chen T, Chen S, Huang W, Wu G (2010) Comparison between several seismic inversion methods and their application in mountainous coal fields of western China. Min Sci Technol 20(4):585–590
  • 56. Zoback MD (2010) Reservoir geomechanics. Cambridge University Press, Cambridge
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d65c89b-3328-4f93-8b3b-b0aa07d012c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.