PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Influence of Grain Refinement and Feeding Quality on Damping Properties of the Al-20Zn Cast Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents relationships between the degree of structure fineness and feeding quality of the Al – 20 wt.% Zn (Al-20 Zn) alloy cast into a mould made from sand containing silica quartz as a matrix and bentonite as a binder, and its damping coefficient of the ultrasound wave at frequency of 1 MHz. The structure of the examined alloy was grain refined by the addition of the refining Al-3 wt.% Ti – 0.15 wt.%C (TiCAl) master alloy. The macrostructure analysis of the initial alloy without the addition of Ti and the alloy doped with 50-100 ppm Ti as well as results of damping experiments showed that the structure of the modified alloy is significantly refined. At the same time, its damping coefficient decreases by about 20-25%; however, it still belongs to the so called high-damping alloys. Additionally, it was found that despite of using high purity metals Al and Zn (minimum 99,99% purity), differences in the damping coefficient for samples cut from upper and bottom parts of the vertically cast rolls were observed. These differences are connected with the insufficient feeding process leading to shrinkage porosity as well as gases present in metal charges which are responsible for bubbles of gas-porosity.
Rocznik
Strony
209--214
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
autor
  • University of Leoben - Faculty of Metallurgy, Austria
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
Bibliografia
  • [1] Krautkrämer, J. (1959). Determination of the size of defects by the ultrasonic impulse echo method. British Journal of Applied Physics. 10(6), 240-245.
  • [2] Papadakis, E.P. (1965). Ultrasonic attenuation caused by scattering in polycrystalline metals. The Journal of Acoustical Society of America. 37, 711-717.
  • [3] Papadakis, E.P. (1972). Absolute Accuracy of the pulse-echo overlap method and the pulse-superposition method for ultrasonic velocity. The Journal of Acoustical Society of America. 52, 843-846.
  • [4] Adler L. Ultrasonic method to determine gas porosity in aluminium alloy castings: Theory and experiment (1986). Journal of Applied Physics. 59(2), pp. 336-340.
  • [5] Pitkänen, J., Posiva Oy, P., Arnold, W., Hirsekorn, S. (2007). The effect of grain size on the defect detectability in copper components in ultrasonic testing. In 6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components. Budapest, Hungary.
  • [6] Podymova, N.B. & Karabutov, A.A. (2017). Combined effects of reinforcement fraction and porosity on ultrasonic velocity in SiC particulate aluminum alloy matrix composites. Composites Part B: Engineering. 113, 138-143.
  • [7] Konar, R. & M. Mician M. (2017). Ultrasonic inspection techniques possibilities for centrifugal cast copper alloy. Archives of Foundry Engineering. 17(2), 35-38.
  • [8] Bai, L., Velichko, A., Bruce, W. & Drinkwater, B.W. (2018). Ultrasonic defect characterisation—Use of amplitude, phase, and frequency information. The Journal of the Acoustical Society of America. 143(1), 349-360. DOI: 10.1121/ 1.5021246.
  • [9] Suchy, J. (1976). Ultrasonic methods for measuring the properties of iron strength. Wybrane Zagadnienia z Odlewnictwa, Zeszyt 25, Materiały Konferencyjne. Gliwice: STOP. (in Polish).
  • [10] Suchy, J. (1976). Measurement of cast iron strength by ultrasonic methods. Wybrane Zagadnienia z Odlewnictwa dla Konstruktorów, Zeszyt 10, Materiały Konferencyjne. Gliwice: STOP. (in Polish).
  • [11] Rzadkosz, S. (1995). The effect of chemical composition and phase transitions on the damping and mechanical properties of alloys from the aluminum-zinc system. Krakow: Wydawnictwa AGH Rozprawy Monografie. (in Polish).
  • [12] Thompson, R.B. (1996). Ultrasonic measurement of mechanical properties. IEEE Ultrasonics Symposium, (pp. 735-744).
  • [13] Raj, B., Moorthy, V., Jayakumar, T. & Rao, K.B.S. (2003). Assessment of microstructures and mechanical behaviour of metallic materials through non-destructive characterization. International Materials Reviews. 48, 273-325.
  • [14] Zhang, Y., Ma, N., Le, Y., Li, S. & Wang, H. (2005). Mechanical properties and damping capacity after grain refinement in A356 alloy. Materials Letters. 59, 2174-2177.
  • [15] Nanekar, P.P., Shah, B.K. (2003). Characterization of material properties by ultrasonics. National Seminar on Non-destructive Evaluation, NDE, Indian Society for Non-Destructive Testing, Trivandrum, 2003. BARC Newsletter, Issue No. 249, Founder’s Day Special Issue, pp. 25-38.
  • [16] Krajewski, W.K., Buras, J., Krajewski, P.K., Greer, A.L., Faerber, K. & Schumacher, P. (2015). New developments of Al-Zn cast alloys. Materials Today: Proceedings. 2, 4978-4983.
  • [17] Krajewski, W.K., Buras, J., Krajewski, P.K., Greer, A.L., Schumacher, P. & Haberl, K. (2016). New developments on optimizing properties of high-Zn aluminium cast alloys. IOP Physics Conference Series: Materials Science and Engineering. 143(012029). DOI:10.1088/1757-899X/143/1/012029.
  • [18] Gao, W., Glorieux, C., Kruger, S.E., Van de Rostyne, K., Gusev, V., Lauriks, W. & Thoen, J. (2001) Investigation of the microstructure of cast iron by laser ultrasonic surface wave spectroscopy. Materials Science and Engineering. A313, 170-179.
  • [19] Rajendran, V., Kumaran, M.S., Palanichamy, P., Jayakumar, T. & Raj, B. (2005). Ultrasonic studies for microstructural characterization of A98090 aluminum-lithium alloy. Materials Evaluation. 63, 837–842.
  • [20] Smith, R.L. (September 1982). The effect of grain size distribution on the frequency dependence of the ultrasonic attenuation in polycrystalline materials. Ultrasonics. 211-214.
  • [21] Saniie, J. (1986). Quantitative grain size evaluation using ultrasonic echos. The Journal of Acoustical Society of America. 80, 1816-1824.
  • [22] Yamano, M., Ichikawa, F., Okuno, M., Suzuki, N. & Lizuka, Y. (1996). Nondestructive measurement of grain size in steel plate by ultrasonic attenuation. Materials Science Forum. 210-213, 759-766.
  • [23] Nicoletti, D. & Anderson, A. (1997). Determination of grain-size distribution from ultrasonic attenuation: Transformation and inversion, The Journal of Acoustical Society of America. 101, 686-689.
  • [24] Ahn, B., Lee, S.S., Hong, S.T., Kim, H.C. & Kang, S-J.L. (1999). Application of the acoustic resonance method to evaluate the grain size of low carbon steels. NDT&E International. 32, 85-89.
  • [25] Botvina, L.R., Fradkin, L.J. & Bridge, R. (2000). A new method for assessing the mean grain size of polycrystalline materials using ultrasonic NDE. Journal of Materials Science. 35, 4673-4683.
  • [26] Nowacki, K. (2009). Possibility of determining steel grain size using ultrasonic waves. Metalurgija. 48, 113-115.
  • [27] Chaparro-Gonzalez, J., Mondragon-Sanchez, L., Nunez-Alcocer, J. (1995). Application of an ultrasound technique to control the modification of Al-Si alloys. Materials & Design. 16, 47-50.
  • [28] Zhang, Y., Ma, N., Wang, H. & Li, S. (2008). Study on damping behavior of A356 alloy after grain refinement. Materials & Design. 29, 706-708.
  • [29] Krajewski, W.K., Buras, J., Zurakowski, M. & Greer, A.L. (2009). Structure and Properties of Grain-Refined Al-20 wt.% Zn Sand Cast Alloy. Archives of Metallurgy and Materials. 54(2), 329-334.
  • [30] Haberl, K., Krajewski, W.K. & Schumacher, P. (2010). Microstructural features of the grain-refined sand cast AlZn20 alloy. Archives of Metallurgy and Materials. 55(3), 837-841.
  • [31] Krajewski, W.K., Buraś, J., Krajewski, P.K. & Piwowarski, G. (2015). Ultrasound wave attenuation of grain refined high-zinc aluminium sand-cast alloys. Archives of Foundry Engineering. 15(2), 51-54.
  • [32] Ritchie, I.G. & Pan, Z-L.(1991). High-Damping metals and alloys. Metallurgical Transactions. 22 A, 607-616.
  • [33] Zhu, Y.H. (1999). Microstructural dependence of damping behaviour of eutectoid Zn-Al based alloy (ZA27). Journal of Materials Science and Technology. 15, 178-180.
  • [34] Anwar, M. & Murphy, S. (2001). Comparative load-relaxation behaviour of high-aluminium zinc-based alloys. Journal of Materials Science. 36, 411-417.
  • [35] Hung, F.Y., Lui, T.S., Chen, L.H., Chang, H.W. & Chen, Z.F. (2007). Vibration behavior of light metals: Al–Zn alloy and Mg–Al–Zn alloy. Journal of Materials Science. 42, 5020-5028.
  • [36] Zhongming, Z., Jincheng, W., Gencang, Y. & Yaohe, Z. (2000). Microstructural evolution of the supersaturated ZA27 alloy and its damping capacities. Journal of Materials Science. 35, 3383-3388.
  • [37] Xie, J., Zhu, Y., Song, Y., Wang, X. & Chen, Q. (2001). Damping property of supersaturated ZnAl27Ce alloy during natural aging. Journal of Materials Science and Technology. 17, 9-10.
  • [38] Luo, B.H., Bai, Z.H. & Xie, Y.Q. (2004). The effects of trace Sc and Zr on microstructure and internal friction of Zn-Al eutectoid alloy. Materials Science and Engineering. A 370, 172-176.
  • [39] Zhang, Z.M., Wan, J.C., Lid, H.Z. & Guo, X.F. (2006). Effect of annealing on damping capacities of as-cast ZA27 alloy. Acta Metallurgica Sinica – English Letters. 19, 379-384.
  • [40] Krajewski, W.K., Greer, A.L. & Krajewski, P.K. (2013). Trends in developments of high-aluminium zinc alloys of stable structure and properties. Archives of Metallurgy and Materials. 58(3), 845-847.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d627ecc-3035-4d42-a4ec-7c445f4b1d33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.