PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study proposes a methodology to obtain an efficient solution for a programming model which is multi-objective quadratic fractional with pentagonal fuzzy numbers as coefficients in all the objective functions and constraints. The proposed approach consists of three stages. In the first stage, defuzzification of the coefficients is carried out using the mean method of α-cut. Then, in the second stage, a crisp multi-objective quadratic fractional programming model (MOQFP) is constructed to obtain a non-fractional model based on an iterative parametric approach. In the final stage, this multi- -objective non-fractional model is transformed to obtain a model with a single objective by applying the ε-constraint method. This final model is then solved to get desired solution. Also, an algorithm and flowchart expressing the methodology are given to present a clear picture of the approach. Finally, a numerical example illustrating the complete approach is given.
Rocznik
Strony
49--71
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Department of Mathematics, Maharishi Markandeshwar, Mullana-Ambala, India
autor
  • Department of Mathematics, Maharishi Markandeshwar, Mullana-Ambala, India
autor
  • Department of Mathematics, Maharishi Markandeshwar, Mullana-Ambala, India
Bibliografia
  • [1] CHAKRABORTY A., MONDAL S.P., ALAM S., AHMADIAN A., SENU N., DE D., SALAHSHOUR S., The pentagonal fuzzy number, its different representations, properties, ranking, defuzzification and application in game problems, Symm., 2019, 11 (2), 248.
  • [2] CHARNES A., COOPER W.W., Programming with linear fractional functionals, Naval Res. Log., 1962, 9 (3–4), 181–186.
  • [3] KAMBLE A.J., Some notes on pentagonal fuzzy numbers, Int. J. Fuzzy Math. Arch., 13, 113–121, 2017.
  • [4] NIKAS A., FOUNTOULAKIS A., FOROULI A., DOUKAS H., A robust augmented ε-constraint method (augmecon-r) for finding exact solutions of multi-objective linear programming problems, Oper. Res., 2020, 1–42.
  • [5] OJHA A., BISWAL K., Multi-objective geometric programming problem with ε-constraint method, Appl. Math. Model., 2014, 38 (2), 747–758.
  • [6] HEESTERMAN A.R.G., Parametric methods in quadratic programming, Matr. Simp. Alg., 1983, 516–555.
  • [7] ADHAMI A.Y., MUNEEB S.M., NOMANI M.A., A multi-level decision making model for the supplier selection problem in a fuzzy situation, Oper. Res. Dec., 2017, 27 (4), 5–26.
  • [8] LEE B.Y., YUN S., The pentagonal fuzzy numbers, J. Chung. Math. Soc., 2014, 27 (2), 277–286.
  • [9] MARTOS B., WHINSTON V., Hyperbolic programming, Naval Res. Log. Quat., 1964, 11 (2), 135–155.
  • [10] VEERAMANI C., EDALATPANAH S.A., SHARANYA S., Solving the multiobjective fractional transportation problem through the neutrosophic goal programming approach, Discrete Dynamics in Nature and Society, Hindawi, 2021, 1–17.
  • [11] BEHERA D., PETERS K., EDALATPANAH S., Alternative methods for linear programming problem under triangular fuzzy uncertainty, J. Stat. Manage. Syst., 2021, 1–19.
  • [12] VALIPOUR E., YAGHOOBI M., MASHINCHI M., An approximation to the nondominated set of a multiobjective linear fractional programming problem, Optim., 2016, 65 (8), 1539–1552.
  • [13] KHALIFA H.A.E.-W., ALHARBI M., KUMAR P., A new method for solving quadratic fractional programming problem in neutrosophic environment, Open Eng., 2021, 11 (1), 880–886.
  • [14] FALK J.E., PALOCSAY S.W., Optimizing the sum of linear fractional functions, [In:] Recent advances in global optimization, Princeton University Press, 1992, 221–258,.
  • [15] CHIRCOP K., ZAMMIT-MANGION D., On-constraint based methods for the generation of Pareto frontiers, J. Mech. Eng. Aut., 2013, 3 (5), 279–289.
  • [16] TAMMER K., TAMMER C., OHLENDORF E., Multicriterial fractional optimization, Humboldt--Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultat II, Institut für Mathematik,2005.
  • [17] ZADEH L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1978, 1 (1), 3–28.
  • [18] BORZA M., RAMBELY A.S., SARAJ M., Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function, Proc. AIP Conf., 2014, 1602 (1), 415–421.
  • [19] EHRGOTT M., RUZIKA S., Improved ε-constraint method for multiobjective programming, J. Opt. Theor. Appl., 2008, 138 (3), 375–396.
  • [20] FARNAM M., DAREHMIRAKI M., Solution procedure for multi-objective fractional programming problem under hesitant fuzzy decision environment, J. Fuzzy Ext. Appl., 2021, 2 (4), 364–376.
  • [21] SALAHI M., FALLAHI S., Parametric approach for solving quadratic fractional optimization with a linear and a quadratic constraint, Comp. Appl. Math., 2016, 35 (2), 439–446.
  • [22] EMMERICH M.T., DEUTZ A.H., A tutorial on multiobjective optimization, fundamentals and evolutionary methods, Nat. Comp., 201, 817 (3), 585–609.
  • [23] RANI N., GOYAL V., GUPTA D., Algorithm for bi-level multi-objective fully quadratic fractional optimization model with fuzzy parameters, J. Amb. Int. Hum. Comp., 2021, 12 (12), 10637–10649.
  • [24] EMAM O.E., Interactive approach to bi-level integer multi-objective fractional programming problem, Appl. Math. Comp., 2013, 223, 17–24.
  • [25] EMAM O.E., Interactive bi-level multi-objective integer non-linear programming problem, Appl. Math. Sci., 2011, 5 (65), 3221–3232.
  • [26] ARORA R., GUPTA K., Branch and bound algorithm for discrete multi-level linear fractional programming problem, Oper. Res. Dec., 2018, 28 (2), 5–21.
  • [27] HELEN R., UMA G., A novel method to obtain initial basic solution and optimal solution of pentagonal fuzzy transportation problem, Mal. J. Mat., 2019, 7 (4), 676–680.
  • [28] JAGANNATHAN R., On some properties of programming problems in parametric form pertaining to fractional programming, Manage. Sci., 1966, 12 (7), 609–615.
  • [29] DAS S.K., MANDAL T., A new model for solving fuzzy linear fractional programming problem with ranking function, J. Appl. Res. Ind. Eng., 2017, 4 (2), 89–96.
  • [30] DAS S.K., EDALATPANAH S., DASH J.K., An intelligent dual simplex method to solve triangular neutrosophic linear fractional programming problem, Neutr. Sets Syst., 2020, 36 (1), art. 5.
  • [31] DAS S.K., EDALATPANAH S., MANDAL T., A new method for solving linear fractional programming problem with absolute value functions, Int. J. Oper. Res., 2019, 36 (4), 455–466.
  • [32] DAS S.K., EDALATPANAH S., MANDAL T., A proposed model for solving fuzzy linear fractional programming problem, Numerical point of view, J. Comp. Sci., 2018, 25, 367–375.
  • [33] DAS S.K., EDALATPANAH S., MANDAL T., Application of linear fractional programming problem with fuzzy nature in industry sector, Filomat., 2020, 34 (15), 5073–5084.
  • [34] DAS S.K., EDALATPANAH S., MANDAL T., Development of unrestricted fuzzy linear fractional programming problems applied in real case, Fuzzy Inf. Eng., 2021, 13 (2), 184–195.
  • [35] DAS S.K., MANDAL T., EDALATPANAH S., A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming, RAIRO Oper. Res., 2017, 51 (1), 285–297.
  • [36] DAS S.K., Application of transportation problem under pentagonal neutrosophic environment, J. Fuzzy. Ext. Appl., 2020, 1 (1), 27–41.
  • [37] NAYAK S., OJHA A.K., Solution approach to multi-objective linear fractional programming problem using parametric functions, OPSEARCH, 2019, 56 (1), 174–190.
  • [38] NAYAK S., OJHA A., Generating Pareto optimal solutions of multi-objective LFPP with interval coefficients using ε-constraint method, Math. Model. Anal., 2015, 20 (3), 329–345.
  • [39] MONDAL S.P., MANDAL M., Pentagonal fuzzy number, its properties and application in fuzzy equation, Fut. Comp. Inf. J., 2017, 2 (2), 110–117.
  • [40] TANTAWY S., A new procedure for solving linear fractional programming problems, Math. Comp. Model., 2008, 48 (5–6), 969–973.
  • [41] PATHINATHAN T., PONNIVALAVAN K., Pentagonal fuzzy number, Int. J. Comp. Alg., 2014, 3, 1003–1005.
  • [42] GOYAL V., RANI N., GUPTA D., FGP approach to quadratically constrained multi-objective quadratic fractional programming with parametric functions, OPSEARCH, 2021, 1–9.
  • [43] GOYAL V., RANI N., GUPTA D., Iterative parametric approach for quadratically constrained bilevel multi -objective quadratic fractional programming, J. Comp. Theor. Nanosci., 2020, 17 (11), 5046–5051.
  • [44] GOYAL V., RANI N., GUPTA D., Parametric approach to quadratically constrained multi-level multiobjective quadratic fractional programming, OPSEARCH, 2021, 1–18.
  • [45] GOYAL V., RANI N., GUPTA D., Rouben ranking function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients, In. J. Syst. Assur. Eng. Manage., 2021, 1–10.
  • [46] PARETO V., Manual of Political Economy, A.M. Kelley, 1971.
  • [47] DINKELBACH W., On nonlinear fractional programming, Manage. Sci., 1967, 13 (7), 492–498.
  • [48] ALMOGY Y.,LEVIN O., A class of fractional programming problems, Oper. Res., 1971, 19 (1), 57–67.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d606469-2b69-432c-badd-187436357efe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.