Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Case studies investigating single coal particle ignition and combustion

Treść / Zawartość
Warianty tytułu
Języki publikacji
Studies focused on single fuel particles are designed to provide direct and unbiased information regarding the combustion process. The resulting data is primarily used to create and/or validate mathematical theories and models of the combustion process. The use of a single coal particle as a research object was first initiated over 40 years ago and nowadays is still one of the most important stages in a number of fundamental coal research techniques. Such experiments are especially important in the context of modern concepts that are now under development for new, sustainable and environmentally neutral coal processing technologies. Article summarizes a broad spectrum of research methodologies, which were created in the recent history of single coal particle studies and motivated by the need to develop knowledge for new, clean coal technologies. The purpose of the experiments presented herein was to find the most comprehensive examination of the processes, where coal particles undergo changes at high temperatures. This objective in the case of coal combustion technology generally boils down to the characterization of particle ignition phenomenon and substages of particle combustion. However, recent data presented by different research groups is still not always in agreement even when describing the same investigated issue. These differences often result from the shortcomings of the study methodology itself, which our article also attempts to highlight and analyze.
Opis fizyczny
Bibliogr. 44 poz.
  • Interdisciplinary PhD Studies in the Field of Clean Coal Technologies, Central Mining Institute (Katowice, Poland)
  • Department of Energy Saving and Air Protection, Central Mining Institute (Katowice, Poland)
  • 1. Bateman K.J., Germane G.J., Smoot L.D., Blackham A.U., Eatough C.N. (1995): Effect of pressure on oxidation rate of millimetre-sized char particles. Fuel Vol. 74, pp. 1466–1474.
  • 2. Brooks P.J., Essenhigh R.H. (1988): Variation of ignition temperatures of fuel particles in vitiated oxygen atmospheres: De-\termination of reaction mechanism. Symposium (International) on Combustion Vol. 21, pp. 293–302.
  • 3. Cassel H.M., Liebman I. (1959): The cooperative mechanism in the ignition of dust dispersions. Combustion and Flame Vol. 3, pp. 467–475.
  • 4. Chen J.C., Taniguchi M., Ito K. (1995): Observation of laser ignition and combustion of pulverized coals. Fuel Vol. 74, pp. 323–330.
  • 5. Chen L., Yong S.Z., Ghoniem A.F. (2012): Oxy-fuel combus-tion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science Vol. 38, pp. 156–214.
  • 6. Chen M.R., Fan L.S., Essenhigh R.H. (1985): Prediction and measurement of ignition temperatures of coal particles. Symposium (International) on Combustion Vol. 20, pp. 1513–1521.
  • 7. Coda B., Tognotti L. (2000): The prediction of char combustion kinetics at high temperature. Experimental Thermal and Fluid Science Vol. 21, pp. 79–86.
  • 8. Cozzani V., Petarca L., Pintus S., Tognotti L. (1995): Ignition and combustion of single, levitated char particles. Combustion and lame Vol. 103, pp. 181–193.
  • 9. Essenhigh R.H., Misra M.K., Shaw D.W. (1989): Ignition of coal particles: A review. Combustion and Flame Vol. 77, pp. 3–30.
  • 10. Golec T. (1989): Dynamika odgazowania ziaren węgla. Praca doktorska. (Dynamics of devolatilization of coal particles. PhD thesis). Warszawa, Politechnika Warszawska, pp. 3–185.
  • 11. Gupta R.P. (2005): Coal research in Newcastle – past, present and future. Fuel Vol. 84, pp. 1176–1188.
  • 12. Heino P., Hernberg R., Stenberg J. (1997): Statistical pyrometric sizing of particles in fluidised bed combustion. Combustion and Flame Vol. 108, pp. 315–326.
  • 13. Huang G., Vastola F.J., Scaroni A.W. (1998): Measurement of particle temperatures during coal pyrolysis and combustion. Prepr. Pap. American Chemical Society Vol. 32, pp. 1–7.
  • 14. Hurt R., Lunden M.M., Brehob E.G., Maloney D.J. (1996): Statistical kinetics for pulverized coal combustion. Symposium (International) on Combustion Vol. 26, pp. 3169–3177.
  • 15. Joutsenoja T., Heino P., Hernberg R., Bonn B. (1999): Pyromeric temperature and size measurements of burning coal particles in a fluidized bed combustion reactor. Combustion and Flame Vol. 118, pp. 707–717.
  • 16. Juntgen H., Van Heek K.H. (1979): An update of german non-isothermal coal pyrolysis work. Fuel Processing Technology Vol. 2, pp. 261–293.
  • 17. Kantorovich I.I., Bar-Ziv E. (1999): Heat transfer within highly porous chars: a review. Fuel Vol. 78, pp. 279–299.
  • 18. Karcz H., Zembrzuski M. (1975): Laboratoryjne badania kinetycznych charakterystyk odmian petrograficznych węgla brunatnego w procesie spalania (Laboratory studies of the kinetics for petrographic varieties of brown coal in the combustion process). Chemia Stosowana Vol. 207, pp. 197–206.
  • 19. Katalabmula H., Hayashi J., Chiba T., Kitano K., Ikeda K. (1997): Dependence of single coal particle ignition mechanism on the surrounding volatile matter cloud. Energy & Fuels Vol. 11, pp. 1033–1039.
  • 20. Khatami R., Levendis Y.A. (2011): On the deduction of single coal particle combustion temperature from three-color optical pyrometry. Combustion and Flame Vol. 158, pp. 1822–1836.
  • 21. Khatami R., Stivers C., Joshi K., Levendis Y.A., Sarofim A.F. (2012): Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres. Combustion and Flame Vol. 159, pp. 1253–1271.
  • 22. Krishnaswamy S., Gunn R.D., Agarwal P.K. (1996): Low-temperature oxidation of coal. 2. An experimental and modelling investigation using a fixed-bed isothermal flow reactor. Fuel Vol. 75, pp. 344–352.
  • 23. Levendis Y.A., Joshi K., Khatami R., Sarofim A.F. (2011): Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combustion and Flame Vol. 158, pp. 452–465.
  • 24. Liu B., Zhang Z., Zhang H., Yang H., Zhang D. (2014): An experimental investigation on the effect of convection on the ignition behaviour of single coal particles under various O2 concentrations. Fuel Vol. 116, pp. 77–83.
  • 25. Liu Y., Geier M., Molina A., Shaddix C.R. (2011): Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions. International Journal of Greenhouse Gas Control Vol. 5, pp. S36–S46.
  • 26. Malik A.A., Pehlivan D., Howarth C.R. (1996): The effect of agitation on the char combustion characteristics of large coal particles. Fuel Vol. 75, pp. 379–383.
  • 27. Mühlen H.J., Sowa F. (1995): Factors influencing the ignition of coal particles studies with a pressurized heated-grid apparatus. Fuel Vol. 74, pp. 1551–1554.
  • 28. Murphy J.J., Shaddix C.R. (2006): Combustion kinetics of coal chars in oxygen-enriched environments. Combustion and Flame Vol. 144, pp. 710–729.
  • 29. Pełka P. (2009): Analysis of mass loss of a coal particle during the course of burning in flow of inert material. Combustion and Flame Vol. 159, pp. 1604–1613.
  • 30. Ponzio A., Senthoorselvan S., Yang W., Blasiak W., Eriksson O. (2008): Ignition of single coal particles in high-temperature oxidizers with various oxygen concentrations. Fuel Vol. 87, pp. 974–998.
  • 31. Qiao Y., Zhang L., Binner E., Xu M., Li C. (2010): Aninvestigation of the causes of the difference in coal particle ignition tem-perature between combustion in air and in O2/CO2. Fuel Vol. 89, pp. 3381–3387.
  • 32. Reichelt T., Joutsenoja T., Spliethoff H., Hein K.R.G., Hernberg R. (1998): Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of sur-face temperature and size. Symposium (International) on Combustion Vol. 27, pp. 2925–2932.
  • 33. Ronney P.D. (2001): Premixed-Gas Flame in: Microgravity Combustion: Fires in Free Fall (ed. H. Ross). London, Academic Press, pp. 35–82.
  • 34. Rybak W. (1981): Szybkość spalania węgla i materiałów węglowych. Rozprawa habilitacyjna. (Combustion rates of coals and carbon materials. Habilitation thesis). Wrocław, Politechnika Wrocławska, pp. 1–167.
  • 35. Sami M., Annamalai K., Wooldridge M. (2001): Co-firing of coal and biomass fuel blends. Progress in Energy and Combus-tion Science Vol. 27, pp. 171–214.
  • 36. Seixas J.P.S., Essenhigh R.H. (1986): Ignition temperatures of a high-ash portuguese anthracite: Comparison with a low-ash pennsylvania anthracite. Combustion and Flame Vol. 66, pp. 215–218.
  • 37. Shaddix C.R., Molina A. (2009): Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combus-tion. Proceedings of the Combustion Institute Vol. 32, pp. 2091–2098.
  • 38. Su S., Pohl J.H., Holcombe D., Hart J.A. (2001): Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers. Progress in Energy and Combustion Science Vol. 27, pp. 75–98.
  • 39. Tang G., Zhang H., Zhu M., Yang H., Yue G., Wang S., Wan X. (2010) Experimental Study on the Ignition Process of Single Coal Particles at Microgravity. Microgravity Science and Tech-nology Vol. 22, pp. 27–35.
  • 40. Tripathia A., Vaughna C.L., Maswadehb M., Meuzelaar H.L.C. (2002): Measurement and modeling of individual carbonaceous particle temperature profiles during fast CO2 laser heating: Part 1. Model char. Termochemica Acta Vol. 388, pp. 183–197.
  • 41. Wall T.F., Gupta R.P., Gururajan V.S., Zhang D. (1991): The ignition of coal particles. Fuel Vol. 70, pp. 1011–1016.
  • 42. Wendt C., Eigenbrod C., Moriue O., Rath H.J. (2002): A model for devolatilization andignition of an axisymmetric coal particle. Proceedings of the Combustion Institute Vol. 29, pp. 449–457.
  • 43. Williams A., Pourkashanian M., Jones J.M. (2001): Combustion of pulverized coal and biomass. Progress in Energy and Com-bustion Science Vol. 27, pp. 587–610.
  • 44. Wornat M.J., Hurt R.H., Davis K.A, Yang N.Y.C. (1996): Sin-gle-particle combustion of two biomass chars. Symposium (In-ternational) on Combustion Vol. 26, pp. 3075–3083.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.