PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the parameters of the effective mixing design on bleeding asphalt and reducing the drivers’ safety in right lane of tropical roads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Distresses are integral parts of pavement that occur during the life of the road. Bitumen distress is known as one of the most important problems of Iran's roads, especially in tropical areas and transit routes with heavy axes; so, identifying the effective factors in creating the bleeding phenomenon is very necessary and important. Therefore, this study was conducted to investigate the parameters of the mixing design in creation of bleeding phenomenon and its severity. The collected data were then analyzed and grouped using Design Expert and SPSS software. The results show that all five parameters of optimal bitumen percent, bitumen percent in asphalt mixture, void percent of Marshall Sample, percent void and filler to bitumen ratio are effective on bitumen and its intensity. Among the mentioned parameters, two parameters of percent of bitumen compared to asphalt mixture and the void percent in the Marshall sample have a greater effect on the severity of the bleeding phenomenon.
Rocznik
Tom
Strony
19--35
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Faculty of Civil Engineering, Yazd University, University Blvd, Safayieh, P.O.Box: 8915818411, Yazd, Iran
  • Faculty of Civil Engineering, Yazd University, University Blvd, Safayieh, P.O.Box: 8915818411, Yazd, Iran
  • Faculty of Civil Engineering, Sharif University of Technology, Azadi Ave, P.O. Box: 11155-1639, Tehran, Iran
Bibliografia
  • 1. Jia Y., S. Wang, J. Peng, Y. Gao, D. Hu, X. Zhao. 2022. "Evaluation of pavement rutting based on driving safety of vehicles". International Journal of Pavement Research and Technology 15(2): 457-469. DOI: 10.1007/s42947-021-00032-2.
  • 2. Nhat-Duc H., Q.L. Nguyen, V.D. Tran. 2018. "Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network". Automation in Construction 94: 203-213. DOI: 10.1016/j.autcon.2018.07.008.
  • 3. Gopalakrishnan Kasthurirangan, Siddhartha K. Khaitan, Alok Choudhary, Ankit Agrawal. 2017. "Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection". Construction and Building Materials 157: 322-330. DOI: 10.1016/j.conbuildmat.2017.09.110.
  • 4. Chen W., M. Zheng, C. Lu, N. Tian, X. Ding, N. Li. 2022. "Multi-objective decision support system for large-scale network pavement maintenance and rehabilitation management to enhance sustainability". Journal of Cleaner Production 380: 135028. DOI: 10.1016/j.jclepro.2022.135028.
  • 5. Ranjbar S., F. Moghadas Nejad, H. Zakeri. 2022. "Asphalt Pavement Bleeding Evaluation using Deep Learning and Wavelet Transform". Amirkabir Journal of Civil Engineering 53(11): 2-2. DOI: 10.22060/ceej.2020.18292.6820.
  • 6. Justo-Silva R., A. Ferreira. 2019. "Pavement maintenance considering traffic accident costs". International Journal of Pavement Research and Technology 12(6): 562-573. DOI: 10.1007/s42947-019-0067-3.
  • 7. Han C., T. Ma, S. Chen. 2021. "Asphalt pavement maintenance plans intelligent decision model based on reinforcement learning algorithm". Construction and Building Materials 299: 124278.
  • 8. Nejad F.M., M. Asadi, G.H. Hamedi. 2020. "Determination of moisture damage mechanism in asphalt mixtures using thermodynamic and mix design parameters". International Journal of Pavement Research and Technology 13(2): 176-186. DOI: 10.1007/s42947-019-0099-8.
  • 9. Mansourmoghaddam M., H.R. Ghafarian Malamiri, F. Arabi Aliabad, M. Fallah Tafti, M. Haghani, S. Shojaei. 2022. "The Separation of the Unpaved Roads and Prioritization of Paving These Roads Using UAV Images". Air, Soil and Water Research 15: 11786221221086285. DOI: 10.1177/11786221221086285.
  • 10. Shahin M.Y. 1994. Pavement management for airports, roads, and parking lots. Springer New York, NY. ISBN: 0412992019. 476 p.
  • 11. Lawson W.D. 2006. Maintenance solutions for bleeding and flushed pavements. Texas Department of Transportation. TechMRT: Multidisciplinary Research in Transportation.
  • 12. Sarvari A. 2011. "Investigation of the causes of bitterness in the axes of Khuzestan province". Shahid Chamran University of Ahvaz, Faculty of Engineering. Dissertation of the Master of Road and Transportation.150 p. (In Persian).
  • 13. Thabassum S., M. Kumar. 2021. "Moderation Effect of Raveling on Bleeding failure of Flexible Pavements". International Journal of Transportation Engineering 8(4): 335-340. DOI: 10.1007/10292/IJTE.2021. 613237.1253.
  • 14. Pouranian M.R., J.E. Haddock. 2018. "Determination of voids in the mineral aggregate and aggregate skeleton characteristics of asphalt mixtures using a linear-mixture packing model". Construction and Building Materials 188: 292-304. DOI: 10.1016/j.conbuildmat.2018.08.101.
  • 15. Izdiar P., Mohammadzadeh Pudineh. 2019. "Evaluation and case study of technical and executive specifications of effective factors in creating bitumen in asphalt project in Karaj". 10th Iran Bitumen and Asphalt Conference. P.1-10. (In Persian).
  • 16. Anderson R.M., D.W. Christensen, R. Bonaquist. 2003. "Estimating the rutting potential of asphalt mixtures using Superpave gyratory compaction properties and indirect tensile strength (with discussion)". Journal of the Association of Asphalt Paving Technologists 72. DOI: 10.worldcat.org/issn/02702932.
  • 17. Sabouri M., Y.R. Kim. 2014. “Development of a failure criterion for asphalt mixtures under different modes of fatigue loading”. Transp. Res. Rec. 2447(1): 117-125. DOI: 10.3141/2447-13.
  • 18. Hu J., Z. Qian. 2018. "The prediction of adhesive failure between aggregates and asphalt mastic based on aggregate features". Construction and Building Materials 183: 22-31. DOI: 10.1016/j.conbuildmat.2018.06.145.
  • 19. Sun S., P. Li, J. Su, Y. Ma, X. Wang, J. Bi. 2021. "Study on deformation behavior and prediction model of asphalt mixture based on interface-slip characteristics of aggregates". Construction and Building Materials 294: 123581. DOI: 10.1016/j.conbuildmat.2021.123581.
  • 20. Majidifard H., B. Jahangiri, P. Rath, L.U. Contreras, W.G. Buttlar, A.H. Alavi. 2021. "Developing a prediction model for rutting depth of asphalt mixtures using gene expression programming". Construction and Building Materials 267: 120543. DOI: 10.1016/j.conbuildmat.2020.120543.
  • 21. Saad M. 2014. "Presenting a mathematical model for predicting the level of bitumen in tropical axes". Shahid Chamran University of Ahvaz, Faculty of Engineering. Dissertation of the Master of Road and Transportation. 150 p. (In Persian).
  • 22. Ranjbar S., F.M. Nejad, H. Zakeri. 2021. "An image-based system for asphalt pavement bleeding inspection". International Journal of Pavement Engineering: 1-17. DOI: 10.1080/10298436.2021.1932881.
  • 23. Kleijnen J.P. 2015. Response surface methodology. Handbook of simulation optimization. Springer, New York, NY.
  • 24. Tighe S., N. Li, L.C. Falls, R. Haas. 2000. "Incorporating road safety into pavement management". Transportation Research Record 1699(1): 1-10. DOI: 10.3141/1699-01.
  • 25. Sharma H., S. Kumar. 2016. "A survey on decision tree algorithms of classification in data mining". International Journal of Science and Research (IJSR) 5(4): 2094-2097. DOI: 10. ISSN: 2319-7064.
  • 26. Maimon O., L. Rokach (Eds.). 2010. Data mining and knowledge discovery handbook. Springer Science+Business Media, LLC. DOI: 10.1007/978-0-387-09823-4. ISBN: 978-0-387-09822-7.
  • 27. Brown E.R., S.A. Cross, J.G. Gehler. 1991. "Evaluation of pavement bleeding problem on I-55 in Illinois". Report No. 9. National Center for Asphalt Technology. DOI: 10.1007/978-1-4615-5589-6_1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d52c674-8cf2-454b-8fe3-193c3493bd4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.