PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the effect of thermal stress on the interface damage of hybrid biocomposite materials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we have studied the effect of thermal stress on the damage of fiber-matrix interface of a hybrid biocomposite composed of two natural fibers, Hemp, Sisal, and Starch matrix. Our genetic modeling used the nonlinear acoustic technique based on Cox’s analytical model,Weibull’s probabilistic model, and Lebrun’s model describing the thermal stress by the two coefficients of expansion. The stress applied to our representative elementary volume is a uni-axial tensile stress. The numerical simulation shows that the Hemp-Sisal/Starch hybrid biocomposite is most resistant to thermal stresses as compared with Hemp/Starch biocomposite. It also shows that hybrid biocomposite materials have a high resistance to applied stresses (mechanical and thermal) compared to traditional materials and biocomposite materials. The results obtained in our study coincide perfectly with the results of Antoine et al., which showed through experimental tests that natural fibers perfectly improve the mechanical properties of biocomposite materials.
Rocznik
Strony
253--258
Opis fizyczny
Bibliogr. 28 poz., 1 rys. kolor., wykr.
Twórcy
autor
  • Department of Materials and Components, U.S.T.H.B., Bab Ezzouar, Algiers, Algeria
  • Centre Universitaire Nour Bachir El Bayadh, 32000, Algérie
  • Faculty of Sciences, Department of Physics, Dr Tahar Moulay University of Saïda, 20000 Saïda
  • Institute of Science, University Center, El-Bayadh, Algeria
  • Faculté de Physique, Université des Sciences et de la technologie Mohamed-Boudiaf, el Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algérie
Bibliografia
  • [1] Malumba, P., Janas, S., Deroanne, C., Masimango, T., Béra, F.: Structure de l’amidon de maïs et principaux phénomènes impliqués dans sa modification thermique, Biotechnol. Agron. Soc. Environ, 15, 315-326, 2011.
  • [2] Boursier, B.: Amidons natifs et amidons modifiés alimentaires, Techniques de l’Ingénieur, 2005.
  • [3] Singh, N-: Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem., 81, 219-231, 2003.
  • [4] Buléon, A., Colonna, P., Planchot, V., Ball, S. : Starch Granules: structure and biosynthesis. Int. J. Biol. Macromol, 23, 85- 112, 1998.
  • [5] Monnet, D.: Etude de l’évolution des propriétés mécaniques de matériaux amylacés par sélection et/ou modifications structurales dirigées, Université de Reims Champagne-Ardenne, 2008
  • [6] LY, E.B.: Nouveaux matériaux composites thermoformables à base de fibres de cellulose, Institut National Polytechnique de Grenoble, 2008
  • [7] Pavithran, C., Mukherjee, P. S„ Brahmakumar, M., Damodaran, A. D.: Natural fibers , Biopolymers and Biocomposites, Mater. Sci. Lett, 6 882, 2005
  • [8] Zhang, S., Horrocks, A. R.: A review of flame retardant polypropylene fibres, Prog. Polym. Sc., 28, 1517-1538, 2003.
  • [9] Velumani, S., Navaneethakrishnan, P., Jayabal, S., ROBINON, D.S.R.: Optimization of mechanical properties of non-woven short sisal fibre reinforced vinyl ester composite using factorial design and GA method, 36, 575-583, 2013.
  • [10] Cromack, H.: The effect of cultivar and seed density on the production and fibre content of Cannabis sativa in southern England. Ind Crops Prod, 7, 205-210, 1998.
  • [11] Bouloc, P.: Le chanvre industriel, Ed. France Agricole, Paris, 2006.
  • [12] Ilczyszyn, F., Cherouat, A., Montay. G.: Mechanical behaviour and properties characterization of hemp fibres, Matériaux & Techniques, 100, 451-457, 2012.
  • [13] Attmane, A., Mokaddem, A., Doumi, B., Boutaleb, M., Temimi.L., Boutaous, A.: Study and localization by the nonlinear acoustic technique of the damage to the fiber-matrix interface of a Biocomposite, Mechanics and Mechanical Engineering, 21, 453-465, 2017.
  • [14] Huneault, M. A., Li, H.: Preparation and properties of extruded thermoplastic Starch/Polymers blends, J. Appl. Polym. Sci, 126, 96-108, 2012.
  • [15] Mohammad Dalour Hossen Beg.: The Improvement of Interfacial Bonding, Weathering and Recycling of Wood Fibre Reinforced Polypropylene Composites; Thèse de doctorat, University of Waikato, Hamilton, New Zealand, 2007.
  • [16] Maya, J. J., Anandjiwala, R. D.: Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites; Polymer Composites, 29, 187-207, 2008.
  • [17] Lebrun, G. A.: Comportement thermomécanique et durée de vie de composites àmatrice céramique : théorie et expérience, Thèse de Doctorat n∘ 1606, Université de Bordeaux, 1996.
  • [18] Tadjedit, S., Mokaddem, A., Temimi, L., Doumi, B., Boutaous, A., Beldjoudi, N.: Comparative study by a genetic algorithm on the mechanical properties of PLA and Epoxy Bio-composite Materials reinforced with natural fiber, Journal of Mechanics and Mechanical Engineering, 20, 333-347, 2016.
  • [19] Cox, H. L.: The elasticity and strength of paper and other fibrous materials, British Journal of Applied Physics, 12, 72-79, 1952.
  • [20] Weibull, W.: Theory of the strength of materials, Royal Swedish Academy of Eng. Sci. Proc., 51, 1-45, 1939.
  • [21] Doumi, B., Mokaddem, A., Benrekaa, N., Alami, M., Beldjoudi, N., Botaous, A.: Simulation by a Genetic Algorithm and Location by the Non-linear Acoustic Technique of the Shear Damage to the Fiber-Matrix Interface of a Hybrid Composite Material Alfa- Carbon / Epoxy, Journal of Hybrid Materials, 2, 10-16. 2015
  • [22] Johnson, P. A., McCall, K. R.:. Observation and Implications of Nonlinear Elastic Wave Response in Rock, Geophysical Research Letters, 21, 165, 1994
  • [23] Moussatov, A., Castagnède, B., Gusev, V.: Observation of nonlinear interaction of acoustic waves in granular materials : demodulation process, Phys. Lett. A., 283, 21, 2001
  • [24] Nagy, P.B.: Fatigue damage assesment by nonlinear ultrasonic material chracterization » Ultrasonics, 36, 375, 1998
  • [25] El Guerjouma, R., Faiz, A., Godin, N., Bentahar, M., Baboux, J. C.: Linear and non linear ultrasonics for material damage evaluation and health monitoring., Matériaux et Techniques, 48, 2002
  • [26] Van Den Abeele K., Johnson P, A.: Elastic Pulsed Wave Propagation in media with second or higher-order nonlinearity. Part II. Simulation of Experimental Measurement on Berea Sandstone, J. Acoust. Soc., 99, 6, 1996.
  • [27] Van Den Abeele. K.E. Elastic Pulsed Wave Propagation in media with second or higher-order nonlinearity. Part I. Theoretical framework., J. Acoust. Soc., 99, 6, 1996.
  • [28] Antoine, L, D., Davies, P., Baley, C. C.: Study of interfacial bonding of Flax fibre / Poly-L-lactide, JNC 16, Toulouse, France, AMAC, 10, 2009.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d4cde0d-cd36-4055-93ef-f9ea0d11f5de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.