PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The 2021-2022 Mw 6.0 Bejaia Bay, NE Algeria, earthquake sequence: tectonic implications at the Algerian margin between lesser and greater Kabylian blocks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On March 18, 2021, at 00:04 UTC, a strong earthquake (Mw 6.0) hit Bejaia city, 200 km east of Algiers. Its epicenter was 15 km northeast of Cap Carbon in Bejaia Bay, making it the largest earthquake recorded offshore since the devastating earthquake (Mw 6.8) in Boumerdes on May 21, 2003. The earthquake had a maximum intensity of VII (EMS 98), triggering hundreds of aftershocks and damaging 2000 houses and social infrastructures, as well as causing several rock falls along the rocky coastline, but no human casualties were reported. The waveform inversion and spectral analysis of the mainshock and its largest aftershocks indicate an alignment along an E-W thrust fault plane offshore, dipping southward, the mainshock seismic moment of M0 = 9.7e + 17 N.m. corresponding to a magnitude Mw = 6.0. The aftershocks illuminated a surface 22 km long (N-S) and 12 km wide; their statistical parameters were assessed by Guttenberg-Richter relationship, Omori decay, and temporal clustering. The b-value is estimated at 0.83, the p value at 0.95, and the n-value at 0.75 (i.e., 75% triggered events), which follows classical patterns of aftershock sequences and suggests the sequence tectonic genesis. Furthermore, previous studies showed that the epicentral area was positively charged by coseismic static stresses transferred from recent events in the Bejaia-Jijel margin. Exactly one year later, on March 19, 2022, a moderate earthquake struck the same epicentral zone, 3 km NW of the first shock, generating a moment M0 = 8.5e + 16 N.m. corresponding to a magnitude Mw = 5.3; its focal mechanism also revealed an E-W striking reverse fault with a small strike-slip component. The present-day local stress field is characterized by a contractional tectonic regime (R ‘ = 2.99 ± 0.24) and d orientation (N345°E) consistent with the maximum regional compressive stress direction (NNW-SSE). The 2021-2022 Bejaia Bay seismic sequence underlined the active tectonics linking the major E-W offshore thrust fault system and the NW-SE strike-slip Babors Transverse Fault system. This sequence, along with a number of other earthquakes that occurred around the Lesser Kabylia Block (LKB) over the last decade, likely highlights the ongoing incipient subduction process between Africa and Eurasia along the northern Algerian margin.
Czasopismo
Rocznik
Strony
529--551
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
autor
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
autor
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
  • University Ferhat Abbas of Setif, Setif, Algeria
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
autor
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
  • Research Center in Astronomy, Astrophysics, and Geophysics, 16340 Algiers, Algeria
Bibliografia
  • 1. Abacha I, Boulahia O, Yelles-Chaouche A, Semmane F, Beldjoudi H, Bendjama H (2019) The 2010 beni-Ilmane, Algeria, earthquake sequence: statistical analysis, source parameters, and scaling relationships. J Seismol 23:181-193. https://doi.org/ 10.1007/s10950-018-9800-7
  • 2. Abacha I, Boulahia O, Yelles-Chaouche A et al (2023) The 24 January 2020 Mw 5.0 El Aouana Earthquake, Northeastern Algeria: insights into a new NW-SE right-lateral Bejaia-Babors shear zone. Pure Appl Geophys. https://doi.org/10.1007/ s00024-023-03265-3
  • 3. Abacha I (2015) Etude de la sismicité de la région Nord-Est de l’Algérie. Dissertation, University of Ferhat Abbas Sétif. http:// dspace.univ-setif.dz:8888/jspui/handle/123456789/1802
  • 4. Aidi C, Beslier MO, Yelles-Chaouche AK et al (2018) Deep structure of the continental margin and basin off Greater Kabylia, Algeria—new insights from wide-angle seismic data modeling and multichannel seismic interpretation. Tectonophysics. https://doi. org/10.1016/j.tecto.2018.01.007
  • 5. Akoglu AM, Jónsson S, Wang T et al (2018) Evidence for tear faulting from new constraints of the 23 october 2011 Mw 7.1 Van, Turkey, earthquake based on InSAR, GPS, coastal uplift, and field observations. Bull Seismol Soc Am. https://doi.org/10.1785/ 0120170314
  • 6. Angelier J, Mechler P (1977) Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bull Soc Géol France. https://doi.org/10.2113/gssgfbull.S7-XIX.6.1309
  • 7. Arab M, Rabineau M, Déverchere J et al (2016) Tectonostratigraphic evolution of the eastern Algerian margin and basin from seismic data and onshore-offshore correlation. Mar Pet Geol. https://doi. org/10.1016/j.marpetgeo.2016.08.021
  • 8. Archuleta RJ, Cranswick E, Mueller C, Spudich P (1982) Source parameters of the 1980 Mammoth Lakes, California, earthquake sequence. J Geophys Res. https://doi.org/10.1029/JB087iB06p 0459
  • 9. Auzende JM, Bonnin J, Olivet JL (1975) La marge nord-africaine con-sidérée comme marge active. Bull Soc Géol France. https://doi. org/10.2113/gssgfbull.S7-XVII.4.486
  • 10. Benaouali-Mebarek N, Frizon de Lamotte D, Roca E et al (2006) Postcretaceous kinematics of the atlas and tell systems in central Algeria: early foreland folding and subduction-related deformation. Compt Rend Geosci. https://doi.org/10.1016/j.crte.2005.11.005
  • 11. Bendjama H, Yelles-Chaouche A, Boulahia O et al (2021) The march 2017 earthquake sequence along the E-W trending McidAicha-Debbagh fault, northeast Algeria. Geosci J 25:697-713. https:// doi.org/10.1007/s12303-020-0059-y
  • 12. Bendjama H (2022) Caractérisation des séquences sismiques récentes dans la région tectonique de la faille décrochante de Mcid Aicha-Debbagh, Nord-Est de l’Algérie. Dissertation, University of Abou Bekr Belkaid Tlemcen. http://dspace.univ-tlemcen.dz/handle/112/ 19802
  • 13. Boudiaf MA (1996) Etude sismotectonique de la région d’Alger et de la Kabylie (Algérie). Dissertation, University of Montpellier.
  • 14. Bougrine A, Yelles-Chaouche AK, Calais E (2019) Active deformation in Algeria from continuous GPS measurements. Geophys J Int. https://doi.org/10.1093/gji/ggz035
  • 15. Bouillin JP (1986) Le “bassin maghrebin”; une ancienne limite entre l’Europe et l’Afrique a l’ouest des Alpes. Bull Soc Géol France 2(4):547-558
  • 16. Boulahia O, Abacha I, Yelles-Chaouche A et al (2021) Recent seismic activity in the Bejaia-Babors region (Northeastern Algeria): the case of the 2012-2013 Bejaia Earthquake Sequences. Pure Appl Geophys 178(1253):1279. https://doi.org/10.1007/ s00024-021-02711-4
  • 17. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997-5009
  • 18. Chatelain J (1978) Étude fine de la sismicité en zone de collision continentale a l’aide d’un réseau de stations portables : la région Hindu-Kush-Pamir. Dissertation, University of Paul Sabatier Toulouse
  • 19. Delvaux D (2012) Release of program Win-Tensor 4.0 for tectonic stress inversion: Statistical expression of stress parameters, EGU General Assembly, Vienna, 2012. Geophysical Research Abstracts, 14, EGU2012-EGU5899.
  • 20. Déverchere J, Yelles K, Domzig A, Mercier de Lépinay B et al (2005) Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophys Res Lett. https:// doi.org/10.1029/2004GL021646
  • 21. Domzig A (2006) Déformation active et récente, et structuration tec-tonosédimentaire de la marge sous-marine algérienne. Dissertation. University of Western Brittany Brest.
  • 22. Duarte JC, Rosas FM, Terrinha P et al (2013) Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin. Geology. https://doi.org/10.1130/G34100.1
  • 23. Efron B (1982) The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics, Monograph 38, SIAM, Philadelphia
  • 24. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185-188
  • 25. Hainzl S, Kraft T, Wassermann J, Igel H, Schmedes E (2006) Evidence for rainfall-triggered earthquake activity. Geophys Res Lett. https://doi.org/10.1029/2006GL027642
  • 26. Hamai L, Petit C, Abtout A, Yelles-Chaouche A, Déverchere J (2015) Flexural behaviour of the north Algerian margin and tectonic implications. Geophys J Int. https://doi.org/10.1093/gji/ggv098
  • 27. Hamai L, Petit C, Le Pourhiet L et al (2018) Towards subduction inception along the inverted North African margin of Algeria? Insights from thermo-mechanical models. Earth Planet Sci Let. https://doi. org/10.1016/j.epsl.2018.08.028
  • 28. Hanks TC, Wyss M (1972) The use of body-wave spectra in the determination of seismic-source parameters. Bull Seismol Soc Am. https://doi.org/10.1785/BSSA0620020561
  • 29. Haskov J, Ottemöller L (1999) SEISAN earthquake analysis software. Seismol Res Let. https://doi.org/10.1785/gssrl.70.5.532
  • 30. Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics. https://doi.org/10.1029/2000TC9000 18
  • 31. Kherroubi A, Déverchere J, Abdelkarim Y et al (2009) Recent and active deformation pattern off the easternmost Algerian margin, Western Mediterranean Sea: new evidence for contractional tectonic reactivation. Marine Geol. https://doi.org/10.1016/j.margeo. 2008.05.016
  • 32. Kissling E (1994) Initial reference model in local earthquake tomography. J Geophys Res 99:19635-19646
  • 33. Klein F (2002) User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes, USGS Open-File Report 02-171, vers. 1, p 123
  • 34. Klingelhoefer F, Déverchere J, Graindorge D et al (2022) Formation, segmentation and deep crustal structure variations along the Algerian margin from the SPIRAL seismic experiment. J Afri Earth Sci. https://doi.org/10.1016/j.jafrearsci.2021.104433
  • 35. Leffondré P, Déverchere J, Medaouri M (2021) Ongoing inversion of a passive margin: spatial variability of strain markers along the Algerian margin and basin (Mediterranean Sea) and seismotectonic Implications. Front Earth Sci. https://doi.org/10.3389/feart. 2021.674584
  • 36. Lin J, Stein RS, Meghraoui M, Toda S, Ayadi A, Dorbath C, Belabbes S (2011) Stress transfer among en echelon and opposing thrusts and tear faults: triggering caused by the 2003 Mw = 6.9 Zem-mouri, Algeria, earthquake. J Geophys Res. https://doi.org/10. 1029/2010JB007654
  • 37. Magistrale H, Day S (1999) 3D simulations of multi-segment thrust fault rupture. Geophys Res Let. https://doi.org/10.1029/1999G L900401
  • 38. Meghraoui M, Pondrelli S (2012) Active faulting and transpression tectonics along the plate boundary in North Africa. Ann Geophys. https://doi.org/10.4401/ag-4970
  • 39. Meghraoui M, Cisternas A, Philip H (1986) Seismotectonics of the lower cheliff basin: structural background of the El Asnam (Algeria) earthquake. Tectonics. https://doi.org/10.1029/TC005i006p 00809
  • 40. Mesimeri M, Karakostas V, Papadimitriou E, Tsaklidis G, Jacobs K (2018) Relocation of recent seismicity and seismotectonic properties in the Gulf of Corinth (Greece). Geophys J Int 212:11231142. https://doi.org/10.1093/gji/ggx450
  • 41. Mihoubi A, Schnürle P, Benaissa Z et al (2014) Seismic imaging of the eastern Algerian margin off Jijel: integrating wide-angle seismic modeling and multichannel seismic pre-stack depth migration. Geophys J Int 198:1486-1503. https://doi.org/10.1093/gji/ggu179
  • 42. Mock S, Herwegh M (2017) Tectonics of the central Swiss Molasse Basin: Post-Miocene transition to incipient thick-skinned tectonics? Tectonics. https://doi.org/10.1002/2017TC004584
  • 43. Rivera L, Cisternas A (1990) Stress tensor and fault plane solutions for a population of earthquakes. Bull Seismol Soc Am. https://doi. org/10.1785/BSSA0800030600
  • 44. Schettino A, Turco E (2006) Plate kinematics of the western Mediterranean region during the Oligocene and early Miocene. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2006.02997.x
  • 45. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquakesize distribution across different stress regimes. Nature. https:// doi.org/10.1038/nature04094
  • 46. Spakman W, Wortel MJR (2004) A tomographic view on western mediterranean geodynamics. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler P (eds) The TRANSMED Atlas, The Mediterranean Region from Crust to Mantle (Springer, Berlin, pp. 31-52). https://doi.org/10.1007/978-3-642-18919-7_2
  • 47. Stein R (1999) The role of stress transfer in earthquake occurrence. Nature. https://doi.org/10.1038/45144
  • 48. Strzerzynski P, Déverchere J, Cattaneo A, Domzig A, Yelles-Chaouche AK (2010) Tectonic inheritance and Pliocene-Pleistocene inversion of the Algerian margin around Algiers: insights from multibeam and seismic reflection data. Tectonics. https://doi.org/10. 1029/2009TC002547
  • 49. Thomas WA (1990) Controls on locations of transverse zones in thrust belts. Eclogae Geol Helv 83(3):727-744
  • 50. Trugman DT, Shearer PM (2017) GrowClust: a hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish springs and Sheldon, Nevada, earthquake sequences. Seismol Res Lett 88:379-391. https://doi.org/10.1785/02201 60188
  • 51. Utsu T, Ogata Y et al (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43(1):1-33. https:// doi.org/10.4294/jpe1952.43.1
  • 52. Van Hinsbergen DJJ, Vissers RLM, Spakman W (2014) Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics. https://doi.org/10.1002/2013T C003349
  • 53. Wada I, Wang K (2009) Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geo-chem Geophys Geosyst. https://doi.org/10.1029/2009GC002570
  • 54. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bull Seismol Soc Am 90:1353-1368
  • 55. Waldhauser F (2001) HypoDD a program to compute double-difference hypocenter locations, U.S. Geological Survey Open File report, 01-113
  • 56. Yagi Y, Nishimura N (2011) Moment tensor inversion of near-source seismograms. Bull Inter Inst Seismol Earthquake Eng 45:133-138
  • 57. Yelles K, Lammali K, Mahasas A, Calais E, Briole P (2004) Coseis-mic deformation of the May 21 st, 2003, Mw = 6.8 Boumerdes earthquake, Algeria, from GPS measurements. Geophys Res Let. https://doi.org/10.1029/2004GL019884
  • 58. Yelles-Chaouche A, Roger J, Déverchere J et al (2009) The 1856 Tsunami of Djidjelli (Eastern Algeria): seismotectonics modelling and hazard implications for the Algerian coast. Pure Appl Geophys. https://doi.org/10.1007/978-3-0346-0064-4_14
  • 59. Yelles-Chaouche AK, Abacha I, Boulahia O et al (2021) The 13 July 2019 Mw: 5.0 Jijel earthquake, northern Algeria: an indicator of active deformation along the eastern Algerian margin. J of Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2021.104149
  • 60. Yelles-Chaouche A, Aidi C, Beldjoudi H et al (2022) The recent seismicity of northern Algeria: the 2006-2020 catalogue. Med Geosc Rev. https://doi.org/10.1007/s42990-022-00092-x
  • 61. Yelles-Chaouche AK, the Maradja Team (2006) A Morphotectonic overview of the deforming seaward boundary of the Africa-Europe convergence zone off Algeria from Oran to Annaba. EGU Vienna
  • 62. Yelles-Chaouche AK, the Spiral Team (2010) From Maradja to Spiral surveys. Recent and active deformation of the Algerian margin and the evidence of contractionnal reactivation. ESC Montpellier
  • 63. Yukutake Y, Yoshihisa I (2017) Why do aftershocks occur? Relationship between mainshock rupture and aftershock sequence based on highly resolved hypocenter and focal mechanism distributions. Earth Planets Space. https://doi.org/10.1186/s40623-017-0650-2
  • 64. Zanchi A, D’Adda P, Zanchetta S et al (2012) Syn-thrust deformation across a transverse zone: the Grem-Vedra fault system (central Southern Alps, N Italy). Swiss J Geosci. https://doi.org/10.1007/ s00015-011-0089-6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d4b43ef-c999-46e8-94d1-b437aae0e2b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.