Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims at the immobilization and characterization of thermoalkalophilic lipases produced recombinantly from Bacillus thermocatenulatus BTL2 and Bacillus pumilus MBB03. For this purpose, immobilization of the produced enzymes in calcium-alginate@gelatin (Ca–Alg@gelatin) hydrogel beads, immobilization optimization and characterization measurements of the immobilized-enzyme hydrogels were conducted. Optimum temperature and pH values were determined for B. thermocatenulatus and B. pumilus MBB03 immobilized-enzyme hydrogels (60–70 °C, 55 °C and pH 9.5, pH 8.5). Thermal stability was determined between 65 °C and 60 °C of B. thermocatenulatus and B. pumilus MBB03 immobilized enzymes, respectively. The pH stability was determined between pH 7.0–11.0 at +4°C and pH 8.0–10.0 at +4 °C, respectively. In conclusion, the entrapment technique provided controlled production of small diameter hydrogel beads (~ 0:19 and ~ 0:29) with negligible loss of enzyme. These beads retained high lipase activity at high pH and temperature. The activity of Ca–Alg@gelatin-immobilized lipase remained relatively stable for up to three cycles and then markedly decreased. With this enzyme immobilization, it may have a potential for use in esterification and transesterification reactions carried out in organic solvent environments. We can conclude that it is one of the most promising techniques for highly efficient and economically competent biotechnological processes in the field of biotransformation, diagnostics, pharmaceutical, food and detergent industries.
Rocznik
Tom
Strony
art. no. e2
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Department of Chemistry and Chemical Processing Technologies, Kars Vocational High School Kafkas University, Kars, Turkey
autor
- Department of Chemistry, Faculty Science and Letter, Kafkas University, Kars, Turkey
Bibliografia
- 1. Arıca M.Y., Bayramoğlu G., 2004. Reversible immobilization of tyrosinase onto polyethyleneimine-grafted and Cu(II) chelated poly(HEMA–co–GMA) reactive membranes. J. Mol. Catal. B: Enzym., 27, 255–265. DOI: 10.1016/J.MOLCATB. 2003.12.006.
- 2. Bayramoglu G., Kaçar Y., Denizli A., Arıca M.Y., 2002. Covalent immobilization of lipase onto hydrophobic group incorporated poly(2–hydroxyethyl methacrylate) based hydrophilic membrane matrix. J. Food Eng., 52, 367–374. DOI: 10.1016/S0260-8774(01)00128-5.
- 3. Bickerstaff G.F., 1995. Impact of genetic technology on enzyme technology. Genet. Eng. Biotechnol., 15, 13–30.
- 4. Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-252. DOI:10.1006/abio.1976.9999.
- 5. Chaplin M.F., Bucke C., 1990. Enzyme technology. Cambridge University Press, Cambridge.
- 6. Cheetham P.S.J., Blunt K.W., Bocke C., 1979. Physical studies on cell immobilization using calcium alginate gels. Biotechnol. Bioeng., 21, 2155–2168. DOI: 10.1002/bit.260211202.
- 7. Cheirsilp B., Jeamjounkhaw P., H-Kittikun A., 2009. Optimizing an alginate immobilized lipase for monoacylglycerol production by the glycerolysis reaction. J. Mol. Catal. B: Enzym., 59, 206–211. DOI: 10.1016/j.molcatb.2009.03.001.
- 8. Chiou S.H., Wu W.T., 2004. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25, 197–204. DOI: 10.1016/S0142-9612(03)00482-4.
- 9. Clark D.S., 1994. Can immobilisation be exploited to modify enzyme activity? Trends Biotechnol., 12, 439–443. DOI: 10.1016/0167-7799(94)90018-3.
- 10. Dey G., Singh B., Banerjee R., 2003. Immobilization of amylase produced Bacillus circulans GRS 313. Braz. Arch. Biol. Technol., 46, 167–176. DOI: 10.1590/S1516-89132003000200005.
- 11. Dharmsthiti S., Luchai S., 1998. Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol. Lett., 179, 241–246. DOI: 10.1111/j.1574-6968.1999.tb08734.x.
- 12. Dong Z., Wang Q., Du Y., 2006. Alginate/gelatin blend films and their properties for drug controlled release. J. Membr. Sci., 280, 37–44. DOI: 10.1016/j.memsci.2006.01.002.dos Santos J.C.S., Garcia-Galan C., Rodrigues R.C., de Sant’ Ana H.B., Gonçalves L.R.B., Fernandez-Lafuente R., 2014. Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. Process Biochem., 49, 1511–1515. DOI: 10.1016/j.procbio.2014.05.009.
- 13. Edelman P.G., Wang J., 1992. Biosensors and chemical sensors: Optimizing performance through polymeric materials. American Chemical Society, Washington, DC, 22–42.
- 14. Emregul E., Sungur S., Akbulut U., 2006. Polyacrylamidegelatin carrier system used for invertase immobilization. Food Chem. 97, 591–597. DOI: 10.1016/j.foodchem.2005.05.017.
- 15. Fadnavis N.W., Sheelu G., Kumar B.M., Bhalerao M.U., Deshpande A.A., 2003. Gelation blends with alginate: gels for lipase immobilization and purification. Biotechnol. Prog., 19, 557– 564. DOI: 10.1021/bp010172f.
- 16. Fernandez-Lorente G., Palomo J.M., Cabrera Z., Fernandez-Lafuente R., Guisán J.M., 2007. Improved catalytic properties of immobilized lipases by the presence of very low concentr tions of detergents in the reaction medium. Biotechnol. Bioeng., 97, 242–250. DOI: 10.1002/bit.21230.
- 17. Fojan P., Jonson P.H., Petersen M.T.N., Petersen S.B., 2000. What distinguishes an esterase from a lipase: A novel structural approach. Biochimie, 82, 1033–1041. DOI: 10.1016/S0300-90 84(00)01188-3.
- 18. Fraser J.E., Bickerstaff G.F., 1997. Entrapment in calcium alginate, In: Bickerstaff G.F. (Ed.), Immobilization of enzymes an cells. Methods in biotechnology, 61–66. Humana Press, New Jersey, 61-65. DOI: 10.1385/0-89603-386-4:61.
- 19. Guisan J.M., 2006. Immobilization of enzymes as the 21st century begins, In: Guisan J.M. (Ed.) Immobilization of enzymes and cells. Methods in Biotechnology™, vol 22. Humana Press. DOI: 10.1007/978-1-59745-053-9_1.
- 20. Hung T.C., Giridhar R., Chiou S.H., Wu W.T., 2003. Binaryimmobilization of Candida rugosa lipase on chitosan. J. Mol. Catal. B: Enzym., 26, 69–78. DOI: 10.1016/S1381-1177(03)00167-X.
- 21. Ismail A.R., Baek K.H., 2020. Lipase immobilization wit support materials, preparation techniques, and applications: Present and future aspects. Int. J. Biol. Macromol., 163, 1624–1639. DOI: 10.1016/j.ijbiomac.2020.09.021.
- 22. Kambourova M., Kirilova N., Mandeva R., Derekova A., 2003. Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC 7. J. Mol. Catal. B:Enzym., 22, 307–313. DOI: 10.1016/S1381-1177(03)00045-6.
- 23. Katchalski-Katzir E., 1993. Immobilized enzymes – learning from past successes and failures. Trends. Biotechnol., 11, 471-478. DOI: 10.1016/0167-7799(93)90080-S.
- 24. Khan N., Maseet M., Basir S.F., 2020. Synthesis and characterization of biodiesel from waste cooking oil by lipase immoblized on genipin cross-linked chitosan beads: A green approach. Int. J. Green Energy, 17, 84–93. DOI: 10.1080/15435075.2019.1700122.
- 25. Kim H.K., Choi H.J., Kim M.H., Sohn C.B., Oh T.K., 2002. Expression and characterization of Ca2+ – independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids, 1583, 205–212. DOI: 10.1016/s1388-1981(02)00214-7.
- 26. Knezevic Z., Bobic S., Milutinovi A., Obradovic B., Mojovic L., Bugarski B., 2002. Alginate-immobilized lipase by electrostatic extrusion for the purpose of palm oil hydrolysis in lecithin/isooctane system. Process Biochem., 38, 313–318. DOI: 10.1016/S0032-9592(02)00085-7.
- 27. Litantra R., Lobionda S., Yim J.H., Kim H.K., 2013. Expressionand biochemical characterization of cold-adapted lipases from antarctic Bacillus pumilus strains. J. Microbiol. Biotechnol., 23, 1221–1228. DOI: 10.4014/jmb.1305.05006.
- 28. López A., Lázaro N., Marqués A.M., 1997. The interphase tecnique: a simple method of cell immobilization in gel-beads. J. Microbiol. Methods, 30, 231–234. DOI: 10.1016/S01677012(97)00071-7.
- 29. Mammarella E.J., Rubiola C.A., 2005. Study of the deactivation of ˛-galoctosidase entrapped in alginate-carrageenan gels. J. Mol. Catal. B: Enzym., 34, 7–13. DOI: 10.1016/j.molcatb. 2005.04.007. Melani N.B., Tambourgi E.B., Silveira E., 2020. Lipases: from production to applications. Sep. Purif. Rev., 49, 143–158. DOI: 10.1080/15422119.2018.1564328.
- 30. Mondal K., Mehta P., Mehta B.R., Varandani D., Gupta M. 2006. A bioconjugate of Pseudomonas cepacia lipase with alginate with enhanced catalytic efficiency. Biochim. Biophys. Acta, Proteins Proteomics, 1764, 1080–1086. DOI: 10.1016j.bbapap.2006.04.008.
- 31. Norouzian D., Javadpour S., Moazami N., Akbarzadeh A., 2002. Immobilization of whole cell penicilin G acylase in open poregelatin matrix. Enzyme Microb. Technol., 30, 26–29. DOI: 10.1016/S0141-0229(01)00445-8.
- 32. Omar I.C., Saeki H., Nishio N., Nagai S., 1988. Hydrolysis of triglycerides by immobilized thermostable lipase from Humicola Lanuginosa. Agric. Biol. Chem., 52, 99–105. DOI: 10.1080/00021369.1988.10868641.
- 33. Ondul E., Dizge N., Albayrak N., 2012. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine. Colloids. Surf., B, 95, 109–114. DOI: 10.1016/j.colsurfb.2012.02.020.
- 34. Ozyilmaz G., Gezer E., 2010. Production of aroma esters by immobilized Candida rugosa and porcine pancreatic lipase into calcium alginate gel. J. Mol. Catal. B: Enzym., 64, 140–145. DOI: 10.1016/j.molcatb.2009.04.013.
- 35. Quyen D.T., Schmidt-Dannert C., Schmid R.D., 2003. High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Protein Expression Purif., 28, 102–110. DOI: 10.1016/s1046-5928(02)00679-4.
- 36. Rahman R.N.Z.R.A., Baharum S.N., Basri M., Salleh A.B., 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem., 341, 267–274. DOI: 10.1016/j.ab.2005.03.006.
- 37. Rakmai J., Cheirsilp B., Prasertsan P., 2015. Enhanced thermal stability of cyclodextrin glycosyltransferase in alginate-gelatin mixed gel beads and the application for – cyclodextrin production. Biocatal. Agric. Biotechnol., 4, 717–726. DOI:10.1016/j.bcab.2015.10.002.
- 38. Ruchenstein E., Wang X., 1993. Lipase immobilized on hydrophobic porous polymer supports prepared by concentrated emulsion polymerization and their activity in the hydrolysis of triacyglycerides. Biotechnol. Bioeng. 42, 821–828. DOI: 10.1002/bit.260420706.
- 39. Scardi V., 1987. [25] Immobilization of enzymes and microbial cells in gelatin. Methods in Enzymology, 135, 293–299. DOI: 10.1016/0076-6879(87)35086-4.
- 40. Sharifi M., Sohrabi M.J., Hosseinali S.H., Hasan A., Kani P.H., Talaei A.J., Karim A.Y., Nanakali N.M.Q., Salihi A., Aziz F.M., Yan B., Khan R.H., Saboury A.A., Falahati M., 2020. Enzyme immobilization onto the nanomaterials: application in enzyme stability and prodrug-activated cancer therapy. Int. J.nBiol. Macromol., 143, 665–676. DOI: 10.1016/j.ijbiomac.2019.12.064.
- 41. Shaw J.F., Chang R.C., Wang F.F., Wang Y.J., 1990. Lipolytic activities of a lipase immobilized on six selected supporting materials. Biotechnol. Bioeng. 35, 132–137. DOI: 10.1002/bit.260350204.
- 42. Talekar S., Chavare S., 2012. Optimization of immobilization of ¸-amylase in alginate gel and its comparative biochemical studies with free ¸-amylase. Recent Res. Sci. Technol., 4(2), 1–5.
- 43. Tischer W., Wedekind F., 1999. Immobilized enzymes: methods and applications, In: Biocatalysis – From Discovery to Application. Topics in Current Chemistry. Vol. 200. Springer, Berlin, Heidelberg, 95–126. DOI: 10.1007/3-540-68116-7_4.
- 44. Trabelsi I., Ayadi D., Bejar W., Bejar S., Chouayekh H., Salah R.B., 2014. Effects of Lactobacillus plantarum immobilizationin alginate coated with chitosan and gelatin on antibacterial activity. Int. J. Biol. Macromol., 64, 84–89. DOI: 10.1016/j.ijbiomac.2013.11.031.
- 45. Vaidya B.K., Ingavle G.C., Ponrathnam S., Kulkarni B.D., Nene S.N., 2008. Immobilization of Candida rugosa lipase on poly (allyl glycidyl ether–co–ethylene glycol dimethacrylate) macroporous polymer particles. Bioresour. Technol., 99, 3623–3629. DOI: 10.1016/j.biortech.2007.07.035.
- 46. Vujčić Z., Miloradović Z., Milovanović A., Božić N., 2011. Cell wall invertase immobilisation within gelatin gel. Food Chem., 126, 236–240. DOI: 10.1016/j.foodchem.2010.11.010.
- 47. Winkler U.K., Stuckman M., 1979. Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol., 138, 663–670. DOI: 10.1128/jb.138.3.663-670.1979.
- 48. Won K., Kim S., Kim K.J., Park H.W., Moon S.J., 2005. Optimization of lipase entrapment in Ca–alginate gel beads. Process Biochem., 40, 2149–2154. DOI: 10.1016/j.procbio.2004.08.014.
- 49. Zhou W., Zhou X., Zhuang W., Lin R., Zhao Y., Ge L., Li M., Wu J., Yang P., Zhang H., Zhu C., Ying H., 2021. Toward controlled geometric structure and surface property heterogeneitiesof TiO2 for lipase immobilization. Process Biochem., 110, 118–128. DOI: 10.1016/j.procbio.2021.08.004.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d4a57f0-0f1e-4921-9100-729dfc557d58