PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimization of critical flow velocity of aeroelastic energy harvester via delayed feedback control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the procedure of modelling and optimization of the aeroelastic energy harvester from the point of view of their operation at very low flow velocities. Using analytical solutions of models of different device variants, the relationships between their efficiency and flow velocity were presented. By way of analytical considerations, the conditions for high performance operation of the device have been demonstrated, indicating at the same time the difficulty in maintaining it at low operation velocities. As a solution to the problem, the application of external delayed feedback control was proposed and its effectiveness was demonstrated.
Rocznik
Strony
art. no. 2020225
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Poznan University of Technology, Institute of Applied Mechanics, Jana Pawła II 24,60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Applied Mechanics, Jana Pawła II 24,60-965 Poznań, Poland
Bibliografia
  • 1. J.P. Den Hartog, Mechanical Vibrations, fourth ed. McGraw-Hill, New York, USA (1956).
  • 2. M. Novak, Aeroelastic galloping of prismatic bodies, Journal of the Engineering Mechanics Division, 96 (1969) 115-142.
  • 3. Y. Ng, S. C. Luo, Y. T. Chew, On using high-order polynomial curve fits in the quasi-steady theory for square-cylinder galloping, J. Fluid and Structures, 20-1 (2005). 141-146.
  • 4. A. Barrero-Gil, G. Alonso, and A. Sanz-Andrés, Energy harvesting from transverse galloping, Journal of Sound and Vibration, 329(14) (2010) 2873- 2883.
  • 5. S. Boisseau, G. Despesse, B. Ahmed Seddik, Electrostatic Energy Harvesting Systems, Small-Scale Energy Harvesting, Intech (2012)
  • 6. A. Kumar, S. S. Balpande, S. C. Anjankar, Electromagnetic Energy Harvester for Low Frequency Vibrations Using MEMS, Procedia Computer Science 79 (2016) 785-792.
  • 7. H. L. Dai, A. Abdelkefi, U. Javed, L. Wang, Modeling and performance of electromagnetic energy harvesting from galloping oscillations, Smart Materials and Structures, 24(4) (2015).
  • 8. A. Haroun, I. Yamada, S. Warisawa, Investigation of Kinetic Energy Harvesting from Human Body Motion Activities using Free/Impact Based Micro Electromagnetic Generator, Joururnal of Diabetes and Cholesterol Metabolism, 1 (2016) 12-16.
  • 9. A. Abdelkefi, A. Nayfeh, M. R. Hajj, Enhancement of power harvesting from piezoaeroelastic systems, Nonlinear Dynamics, 68(4) (2016).
  • 10. A. Abdelkefi, A. Nayfeh, M. R. Hajj, Modeling and analysis of piezoaeroelastic energy harvesters, Nonlinear Dynamics, 67(2) (2011) 925-939.
  • 11. S. Priya, D. J. Inman, Energy Harvesting Technologies, Springer, New York, USA (2009)
  • 12. C. Howells, Piezoelectric energy harvesting, Energy Conversion and Management, 50 (2009) 1847-1850.
  • 13. C. De Marqui, A. Erturk, D. J. Inman, An electromechanical finite element model for piezoelectric energy harvester plates, Journal of Sound and Vibration 327 (2019) 9-25.
  • 14. G. Alonso, J. Meseguer, A. Sanz-Andres, E. Valero, On the galloping instability of two-dimensional bodies having elliptical cross-sections, Journal of Wind Engineering and Industrial Aerodynamics, 98 (2010) 438-448.
  • 15. N. J. Nikitas, H. G. Macdonald, Misconceptions and Generalizations of the Den Hartog Galloping Criterion, Journal of Engineering Mechanics, 140 (2014).
  • 16. J. Meseguer, A. Sanz-Andres, G. Alonso, Determination of Maximum Mechanical Energy Efficiency in Energy Galloping Systems, Journal of Engineering Mechanics, 141 (2015) 1355-1363.
  • 17. A. Abdelkefi, M. R. Hajj, A. Nayfeh, Power harvesting from transverse galloping of square cylinder, Nonlinear Dynamics, 70 (2012).
  • 18. S. Jayant, M. Rohan, Harvesting wind energy using a galloping piezoelectric beam, Journal of Vibration and Acoustics, 134(1) (2012)
  • 19. Y. Wu, D. Li, J. Xiang, Dimensionless modeling and nonlinear analysis of a coupled pitch-plunge-leadlag airfoil-based piezoaeroelastic energy harvesting system, Nonlinear Dynamics, 92(2) (2018) 153-167.
  • 20. R. Vasconcellos, A. Abdelkefi, Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom, Communications in Nonlinear Science and Numerical Simulation, 20(1) (2015) 324-334.
  • 21. Y. Wu, D. Li, J. Xiang, A. Da Ronch, A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom, Theoretical and Applied Mechanics Letters, 6 (2016) 244-247.
  • 22. K. Gu, V. L. Kharitonov, J. Chen, Stability of time delay systems, Birkhäuser, Boston (2003).
  • 23. A. S. Kammer, N. Olgac, Delayed feedback control scheme for improved energy harvesting using piezoelectric networks, Journal of Intelligent Material Systems and Structures, 29(8) (2018) 1546-1559.
  • 24. B. Amine, I. Kirrou, M. Belhaq, Energy harvesting of nonlinear damping system under time delayed feedback gain, MATEC Web of Conferences, 83 (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d48684c-83cb-4dbb-8d92-85b8c1563162
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.