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Abstract 

The paper describes the procedure of modelling and optimization of the aeroelastic energy harvester from  

the point of view of their operation at very low flow velocities. Using analytical solutions of models of different 

device variants, the relationships between their efficiency and flow velocity were presented. By way  
of analytical considerations, the conditions for high performance operation of the device have been 

demonstrated, indicating at the same time the difficulty in maintaining it at low operation velocities.  

As a solution to the problem, the application of external delayed feedback control was proposed  

and its effectiveness was demonstrated. 
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1. Introduction  

The essence of aeroelastic energy harvesting is to convert mechanical energy  

of vibrations caused by flow on electrical energy. One of mechanisms of vibration 

excitation induced by constant flow is galloping – phenomena caused by occurrence  

of negative aerodynamic damping in the system. Mathematical model of this effect was 

first derived by Den Hartog in [1] and in the following years significantly extended  

i.a. in [2]. According to these works, we consider a body with one degree of freedom 

(translation parallel to axis Z), mounted on a damped spring system, subjected to flow 

in a direction parallel to the X axis (see Fig. 1). The dynamics of the system is described 

by the equation: 

𝑚 𝑧̈(𝑡) + 𝑐 𝑧̇(𝑡) + 𝑠(𝑧(𝑡)) = 𝐹𝑧(𝛼) =
1

2
 ℎ 𝜌 𝑈2 𝐶𝑧(𝛼) (1) 

where: m – mass of the body [kg], c – damping coefficient [kg/s], s(x(𝑡)) – restoring 

force [N], 𝑧(𝑡) – displacement in Z direction [m], ()̇ and ()̈ – first and second differential 

with respect to time, 𝐶𝑧(α) – coefficient of aerodynamic force acting in the Z direction  

for 𝛼 = 𝑧̇/𝑈 [-], 𝐹𝑍 – aerodynamic force component acting  

in the Z direction [N], h – characteristic length of the body [m], 𝜌 – fluid density [kg/m2],  
U – flow velocity [m/s]. 
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Figure 1. Physical model of aeroelastic energy harvester.  

𝐹𝐿 – lift force, 𝐹𝐷 – drag force 

As reported in [3] and [4] the approximation of the 𝐶𝑧(α) function with a third order 

polynomial is sufficient for energy harvesting purposes. In addition, we assume 

that the flowed body has a symmetry axis in the direction normal to the flow. In this case, 

the even coefficients 𝑎𝑛 will equal to zero: 

{
 
 

 
 
𝐶𝑧(𝛼) = 𝑎1 𝛼 + 𝑎3 𝛼

3 + 𝒪(𝛼4)

𝑎1 = (
𝑑𝐶𝐿
𝑑𝛼

+ 𝐶𝐷)

𝑎3 =
1

6
(
𝑑3𝐶𝐿
𝑑𝛼3

+ 3
𝑑2𝐶𝐷
𝑑𝛼2

)

 (2) 

Conversion of mechanical energy into electricity can be carried out using a variety  

of transducers, however, the most commonly used are electrostatic, electromagnetic  

and piezoelectric. Electrostatic may be the cheapest solution for large scale production [5], 

[6]. Electromagnetic [7], [8], due to their complicated construction turn  

out to be the most expensive but at the same time characterized by high efficiency.  

The multitude of possible transducer designs of this type increases their versatility, 

allowing their use in both small devices [9] and massive hydro or wind power plants. 

Prototypes, however, most often are consist of piezoelectric transducers [10] – [12], 

which is justified by great simplicity in their implementation while maintaining high 

efficiency. It will also be used in this work. Due to the fact that the value of structural 

damping does not have a qualitative impact on the issue under consideration, 

it will be neglected (𝑐 = 0). Thus, the mathematical model of piezoelectric vibration 

energy harvester (PVEH) takes the form [13]: 

{
 
 

 
 𝑚 𝑧̈(𝑡) + 𝑠(𝑧(𝑡)) + 𝜃 𝑣(𝑡) =

1

2
𝜌𝑈2ℎ ( 𝑎1  

𝑧̇(𝑡)

𝑈
+𝑎3  (

𝑧̇(𝑡)

𝑈
)

3

)

𝐶𝑝 𝑣̇(𝑡) +
𝑣(𝑡)

𝑅
 – 𝜃 𝑧̇(𝑡) = 0

 (3) 

where: v(t) – generated voltage [V], 𝜃 – electromechanical coupling [N/V], R – circuit 

resistance [Ω], Cp – circuit equivalent capacity [F]. Mathematical model (eq. 3)  

can rewritten in dimensionless form by introducing dimensionless parameters: 
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{
 

 𝑥̈(𝑡) + 𝑆(𝑥(𝑡)) + 𝜅 𝑛(𝜏) = 𝑎1 𝜌 𝑢 𝑥̇(𝑡) + 𝑎3 𝜌
 𝑥̇(𝑡)3

𝑢3

 𝑛̇(𝜏) +
𝑛(𝑡)

𝑟
− 𝑥̇(𝑡) = 0

 (4) 

where: 𝑥(𝑡) =
𝑧(𝑡)

ℎ
, 𝑛(𝑡) =

𝑣(𝑡)

𝜃 𝐶𝑝
ℎ,  𝜅 =

𝜃2

𝐶𝑝 𝑚 𝜔𝑛
2, 𝜌 =

ℎ2 𝜌̅

2𝑚 
, 𝑟 = 𝐶𝑝 𝜔𝑛 𝑅, 𝑢 =

𝑈

ℎ 𝜔𝑛
,  

𝑡 = 𝜔𝑛 𝑡 and 𝑆(𝑥(𝑡)) – dimensionless restoring force. 

The efficiency of the device is largely determinated by the geometry of the flowing 

body, which in the model (eq. 3) is represented by coefficients 𝑎1 and 𝑎3. In [14], elliptical 

cross-sections with different ratios between the length of the semi-minor axis  

and the semi-major axis were examined. A substantial set of aerodynamic coefficients 

of various typical sections is included in [15]. The maximum efficiency of PVEH 

depending on the shape of the flowing body was analyzed in [16].  

Another factor strongly affecting the performance of PVEH is its mechanical structure. 

The typical one degree of freedom beam devices ([17], [18], [19]) seem to give way  

in this respect to more complex systems with many degrees of freedom [20]). It is worth 

noting that devices showing also torsional vibrations should not be modeled using  

the Den Hartog’s hypothesis – for torsional vibrations the quasi-stationarity condition 

is never satisfied. The nonstationary flow model was used, among others in work [21].  

One can also indicate many variants of the device with nonlinear mechanical properties 

[22], but – according to the best knowledge of the authors – no work has been done 

so far to compare and evaluate them.  

2. Efficiency study 

The energy generated by the device depends on the flow velocity to which it is exposed. 

In order to determine this relationship, the mathematical model of the device (eq. 3)  

will be solved by utilizing the Harmonic Balance Method, adopting first a linear model  

of restoring force 𝑆(𝑥) = 𝑘 𝑥(𝑡). Analyzing the numerical solutions of the system 

and assuming initial velocity of the system 𝑥̇(𝑡) = 0 it was determined that it would 

be sufficient to set up solutions in the form: 

𝑥(𝑡) = 𝐴𝑥cos(𝜔𝑡) (5) 

𝑛(𝑡) = 𝐴𝑁cos(𝜔𝑡 + 𝜑) (6) 

where: 𝐴𝑥 – dimensionless amplitude of vibration, 𝐴𝑁 – dimensionelss voltage amplitude, 

𝜔 – dimensionless frequency and 𝜑 – phase shift are unknown quantities. Substituting  

the assumed solutions (eq. 5-6) into the governing equations (4) and then balancing 

the harmonics in both equations, we obtain a system of equations, that – with bypassing 

trivial solutions – leads to obtaining the following identities: 
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{
 
 
 
 
 
 

 
 
 
 
 
  sin(𝜑) =

1

√(𝑟𝜔)2 + 1

 cos(𝜑) =
𝑟𝜔

√(𝑟𝜔)2 + 1

𝐴𝑁 = 𝐴𝑥
𝑟𝜔

√1 + 𝑟2𝜔2

𝜔 = √
𝑘𝑟2 + 𝑟2𝜅 − 1 + √4𝑘𝑟2 + (𝑘𝑟2 + 𝑟2𝜅 − 1)2

2𝑟2

𝐴𝑥 = √
4𝑢(𝑟𝜅 − 𝑎1𝑢𝜌(1 + 𝑟

2𝜔2)

3𝑎3𝜌𝜔
2(1 + 𝑟2𝜔2)

 (7) 

 

The average electrical power is defined as: 

𝑃 =
1

𝑇
∫

𝑛(𝑡)2

𝑟
𝑑𝑡 =

𝐴𝑁
2

2𝑟

𝑇

0

 (8) 

where 𝑇 =
2 𝜋

𝜔
 stands for vibration period. By referring  power 𝑃 to the total flow power 

𝑃𝑡 = 𝑢
3𝜌 together with the application of identities (eq. 7) allows the formal definition  

of device efficiency 𝜂 as a function of flow velocity: 

𝜂 =
𝑃

𝑃𝑡
=
2𝑟𝜅(𝑎1𝑢𝜌(1 + 𝑟

2𝜔2) − 𝑟𝜅)

3𝑎3𝑢
2𝜌2(1 + 𝑟2𝜔2)2

 (9) 

Figure 2 represents the function (9) for various system parameters.  

On each of the curves, three values can be observed: critical velocity 𝑢𝑐𝑟 such that 

𝜂(𝑢𝑐𝑟) = 0, resonance velocity 𝑢𝑅, for which  
𝜕𝜂

𝜕𝑢
= 0 and peak efficiency 𝜂(𝑢𝑅) = −

𝑎1
2

6𝑎3
.  

 

Figure 2. Efficiency vs flow velocity for different sets of parameters 
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It should be noted that as the critical velocity 𝑢𝑅 of the system decreases, its operating 

range at high efficiency significantly narrows, thus the device designed for recovering 

energy from slow flows would only work effectively in a very narrow velocity band 

and even a slight deviation from the assumed operation conditions would cause a dramatic 

decrease in the efficiency of the device. 

Reduction in this negative effect can be sought in the features of the device  

with nonlinear restoring force model in form of 𝑆(𝑥) = 𝑘 𝑥(𝑡) + 𝑘𝑁 𝑥(𝑡)
3. 

Since the modification of the stiffness does not affect the second equation of the model 

(eq. 3), the expressions for the phase shift 𝜑 and the relationship between the vibration 

amplitude and the voltage remain unchanged, while the system of equations that allows  

to determine the frequency of the vibrations 𝜔 and the amplitude of the vibrations 𝐴𝑥 

takes the form: 

{
 

 𝜔2 − 𝑘 −
𝑟2𝜅𝜔2

1 + 𝑟2𝜔2
−
3𝑘𝑁𝐴𝑥

2

4
= 0

𝑟𝜅

1 + 𝑟2𝜔2
− 𝑢𝜌𝑎1 −

3𝜌𝜔2𝑎3𝐴𝑥
2

4𝑢
= 0

 (10) 

Due to the complex form of the solution, it will not be cited. 

The solution of the system (10) shows that in devices of this class – in contrast to linear 

ones (see eq. 7) – frequency of vibration depends on the flow velocity, therefore, 

depending on the selected set of system parameters, this can lead to four situations. 

There may exist one limit cycle, the frequency of which changes with the increase 

of the flow velocity and once reaches the value of the resonance frequency.  

 

Figure 3. Efficiency vs flow velocity for different sets of parameters of nonlinear EH 
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This is a case devoid of advantages over a device with a linear characteristic – as shown 

in Figure 3A, as the flow velocity increases, the vibration frequency and the natural 

frequency of the system move away from each other faster than it would be for a constant 

vibration frequency, which leads to narrowing of the area resonance velocities.  

In the second, most unfavorable case, there is an absolutely non-resonance limit cycle,  

the occurrence of which leads to a significant decrease in efficiency (Fig. 3B). There may 

also be two limit cycles – high energy vibrations identical to the first case and nonresonant 

vibration (Fig. 4A).The last possibility is the occurrence of a limit cycle in which 

resonance occurs twice (Fig. 4B). This circumstance is most favorable from the point 

of view of the purpose of the work – a narrow spectrum of high efficiency can be extended  

by a second area of resonance overlapping it. 

 

Figure 4. Efficiency vs flow velocity for different sets of parameters of nonlinear EH 

It should be noted, that also in this case we observe the mechanism of narrowing  

of the first resonance area with decreasing critical velocity, which for its very low values 

results in a clear separation of both resonances with an area of low efficiency.  

3. Delayed feedback control 

The critical velocity of the energy harvester issue is inseparable from its stability –   

the system will be characterized by low critical velocity if it is easily destabilized. In turn, 

the ease of destabilization is a feature of systems with time delay [22],  

which has been frequently utilized to increase the efficiency of different types of energy 

harvesters [23] [24]. Therefore, we propose to replace the linear restoring force factor 

𝑘 𝑥(𝑡) with a controlled actuator with a delay 𝑘𝑑  𝑥(𝑡 − 𝜏) (delayed spring), where 𝑘𝑑 
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stands for controller gain and 𝜏 describes time delay, restoring force is then adopted  

as 𝑆(𝑥) = 𝑘𝑑 𝑥(𝑡 − 𝜏) + 𝑘𝑁 𝑥(𝑡)
3. The expected effect is to obtain the system with a low 

critical velocity whose areas of resonance operation are not separated by a low efficiency 

band. Usually, stability analysis is conducted by examining the sign of the real eigenvalues 

of the system - if even one of them is positive, the system is unstable. Studying the stability 

of systems with a delay is difficult due to the fact that the characteristic equation of models 

of this type is transcendent, so it has infinitely many solutions and thus it is not possible 

to analyze the signs of each of them. However, it is possible to examine the conditions  

for which at least one of the eigenvalues has a purely imaginary value,  

which is information about the occurrence of Hopf bifurcation. This procedure is outlined 

below. Characteristic equation of linearized model of the device takes the form: 

𝜆3 + 𝜆2 (
1

𝑟
− 𝑢𝜌𝑎1) + 𝜆 (𝜅 −

𝑢𝜌𝑎1
𝑟

− 𝑘𝑑ⅇ
−𝜆𝜏) −

𝑘𝑑ⅇ
−𝜆𝜏

𝑟
= 0 (11) 

We are looking for conditions for which at least one of the eigenvalues has a purely 

imaginary value, therefore 𝜆 = 𝑖𝜆0. After substituting this identity into eq. (11), expanding 

the exponential functions according to the Euler formula and separating the real  

and imaginary quantities we get the system of equations: 

{
 

 −
λ0
2

𝑟
+ λ0

2𝑢𝜌𝑎1 = λ0 𝑘𝑑sin(λ0𝜏) +
𝑘𝑑cos(λ0𝜏)

𝑟

−λ0
3 −

λ0𝑢𝜌𝑎1
𝑟

+ λ0𝜅 = λ0 𝑘𝑑cos(λ0𝜏) −
𝑘𝑑sin(λ0𝜏)

𝑟

 (12) 

Adopting 𝜆0
2 = 𝜆s, and raising both equations to the square and then adding them  

by sides we get the equation from which the time delay 𝜏 has been eliminated: 

𝜆𝑠
3 + (

1

𝑟2
− 2𝜅 + (𝑢𝜌𝑎1)

2) 𝜆𝑠
2 + (𝜅2 −

2𝑢𝜅𝜌𝑎1
𝑟

+ (
𝑢𝜌𝑎1
𝑟
)
2

− 𝑘𝑑
2) 𝜆𝑠 −

𝑘𝑑
2

𝑟2
= 0 (13) 

 

Figure 5. Values of roots 𝜆s = 𝜆0
2
 vs flow velocity for 𝑘𝑑 = 0.1, 𝑘𝑑 = 0.3 and 𝑘𝑑 = 0.6 

Assumption about the existence of purely imaginary eigenvalues of the system  

will be met only for the set of parameters for which the above equation will have positive 

real roots in respect of 𝜆s. Assuming 𝜌 = 0.02, 𝑎1 = 2.3, 𝑎3 = −18, 𝑘𝑁 = −1, 𝑟 = 3, 

𝜅 = 1.3, below we present relationship of 𝜆s of  flow velocity 𝑢 for different controller 

gain 𝑘𝑑 (Fig. 5). 

Above graphs prove that the system can be unstable even for the flow velocity u = 0 

and remain unstable for faster flows, if gain 𝑘𝑑 is properly selected. It is also necessary  

to specify the 𝜏 delay limits, which for calculated 𝜆s 𝜖 ℝ
+ will cause instability. Solving  

the system of equations eq. 12  for 𝜏 > 0 leads to the following identity: 
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𝜏 =
1

λ0
(arctg (

𝑟𝜅 − 𝑢(1 + 𝑟2λ0
2)𝜌𝑎1

λ0 − 𝑟
2𝜅λ0 + 𝑟

2λ0
3 + 2𝑘𝜋)) , 𝑘 = 0,1,2, …  (14) 

The delayed feedback controller will effectively destabilize the system if its parameters 

are selected in accordance with the above procedure. However, it should be cautioned  

that the controller will be powered by an external source of energy, therefore, to correctly 

assess the impact of delayed feedback on the device efficiency, it is necessary to determine 

the average power 𝑃𝑐 consumed by the controller. Assuming the previously adopted 

form of solutions (eq. 5-6) and 𝑥(𝑡 − 𝜏) = 𝐴𝑥 cos(𝑡 − 𝜏), it can be defined as: 

𝑃𝑐 =
1

𝑇
∫ 𝑘𝑑 𝑥(𝑡 − 𝜏) 𝑥̇(𝑡) 𝑑𝑡
𝑇

0

=
1

2
𝑘𝑑𝜔𝐴𝑥

2sin(𝜏𝜔) (15) 

The unknown values of 𝐴𝑥 and 𝜔 can be determined by solving the system of equations 

obtained by applying the harmonic balance method, while expanding the appearing 

sin(𝜏𝜔) and cos(𝜏𝜔) elements in the Maclaurin series in term of 𝜔 to at least third order: 

{
 

 𝜔2 − 𝑘𝑑 +
1

2
𝑘𝑑𝜏

2𝜔2 −
𝑟2𝜅𝜔2

1 + 𝑟2𝜔2
−
3𝑘𝑁𝐴𝑥

2

4
= 0

1

6
𝑘𝑑𝜏

3𝜔3 − 𝑘𝑑𝜏𝜔 +
𝑟𝜅𝜔

1 + 𝑟2𝜔2
− 𝑢𝜌𝜔𝑎1 −

3𝜌𝜔3𝑎3𝐴𝑥
2

4𝑢
= 0

 (16) 

 

The efficiency of the controlled system is therefore given by the expression: 

𝜂 =
𝑃 − 𝑃𝑐
𝑃𝑡

=
𝐴𝑥
2  𝜔(𝑟𝜅𝜔 − 𝑘𝑑(1 + 𝑟

2𝜔2)sin(𝜏𝜔))

2𝜌𝑢3(1 + 𝑟2𝜔2)
 (17) 

4. Results and conclusions 

Figure 6 shows graphs of the dependence of efficiency on the flow velocity  

for different energy harvester variants with the same, very low, critical velocities.  

On the first of them, concerning the device with delayed feedback control (Fig. 6-1),  

two resonance peaks can be recognized, and they occurred for velocities respectively:  

𝑢 = 0.32 and 𝑢 = 1.61. By application the controller, both resonances  

can be close enough to create one, relatively wide band of high efficiency. In spectrum  

from 𝑢 = 0.18 up to 𝑢 = 2.16 the efficiency does not decrease more than by 5%.  

In the case of an uncontrolled device with two resonances (Fig. 6-2), this effect  

is not possible due to the fact that the distance between resonances is inversely 

proportional to the critical velocity. This leads to an unfavorable situation in which  

the resonance areas are separated by a low efficiency band. High efficiency spectrum 

occurs only in the narrow velocity band from 𝑢 = 0.18 to 𝑢 = 0.54, therefore it is 5.5 

times narrower than for controlled EH. As shown on figure 6-2, for the higher velocities, 

next high efficiency band is again present, but it should be emphasized that for such low 

critical velocities, the occurrence of a second resonance is conditioned by the supercritical 

Hopf bifurcation, which is associated with setting up an appropriate initial conditions,  

and this may not be possible during the operation of the device. Figure 6-3 applies  

to a single-resonance nonlinear device and its presented to emphasize its low utility  

in contrast to other variants. Considering the above facts, it can be concluded  
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that the utility of noncontrolled devices with low critical velocities is poor 

and they are significantly inferior to energy harvesters with delayed feedback control. 

 

Figure 6. Efficiency vs flow velocity for different variants of device 
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