PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrodynamic Assessment of Distributed Propulsion Systems for Shallow-Draft Inland Vessels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the hydrodynamic performance of three distributed propulsion configurations with distinct hull shapes. The influence of duct design and hull geometry on thrust, absorbed power, and the resulting thrust-topower ratio is explored, and a computational fluid dynamics analysis is conducted with a focus on the relationship between the hull and propulsion system at a constant speed of 3 m/s. The results indicate that a pontoon-shaped hull with matching propulsion configuration yields optimal performance, with superior thrust-to-power ratios and hydrodynamic efficiency. In addition, a comprehensive design graph is presented, with the intention of aiding ship designers in selecting suiTable propulsion configurations for specific vessel types. The findings highlight the importance of integrating hydrodynamic and performance criteria into the design of distributed propulsion systems, and provide insights for the development of next-generation efficient inland vessels. Overall, the study provides practical guidelines for optimising distributed propulsion layouts in shallow-water vessel design.
Rocznik
Tom
Strony
20--32
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • University of Žilina, Faculty of Operation and Economics of Transport and Communications, Žilina, Slovakia
  • MULTI Engineering Services, Komarno, Slovakia
  • University of Žilina, Faculty of Operation and Economics of Transport and Communications, Žilina, Slovakia
  • Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia
  • Department of Navigation and Maritime Safety, Odesa National Maritime University, Odesa, Ukraine
  • Department of Transport and Logistics, Faculty of Technology, Institute of Technology and Business in Ceske Budejovice, Ceske Budejovice, Czechia
Bibliografia
  • 1. Kendra M, Skrucany T, Dolinayova A, Čamaj J, Jurkovič M, Csonka B, Abramovic B. Environmental burden of different transport modes—Real case study in Slovakia. Transp Res Part D: Transp Environ2023, 114, 103552. doi: https://doi.org/10.1016/j.trd.2022.103552
  • 2. Mako P, Galierikova A. Inland navigation on the Danube and the Rhine waterways. In 14th Int. Sci. Conf. on Sustainable, Modern and Safe Transport, TRANSCOM 2021. Slovakia, 26–28 May 2021
  • 3. Hasan SMR, Karim MM. Energy-efficient inland cargo ship design based on fuel consumption and CO2 emission control using CFD. In Proc. 13th Int. Conf. on Marine Technology (MARTEC 2022), 4 Apr 2022. doi: http://dx.doi.org/10.2139/ssrn.4409979
  • 4. Buchler D, Luck R, Markert M. Propulsion and control system for shallow water ships based on surface cutting double propellers. In Proc. 8th IFAC Conf.Control Appl. Mar. Syst.; Rostock-Warnemunde, Germany, 15–17 Sep 2010
  • 5. Zentari L, Moctar O, Lassen J, Hallmann R, Schellin TE. Experimental and numerical investigation of shallow water effects on resistance and propulsion of coupled pusher-barge convoys. Appl Ocean Res 2022,121,103048. doi: https://doi.org/10.1016/j.apor.2022.103048
  • 6. Melnyk O, Onyshchenko S, Koryakin K. Nature and origin of major security concerns and potential threats to the shipping industry. Sci J Silesian Univ Technol, Ser Transp 2021,113,145–153. doi: https://doi.org/10.20858/SJSUTST.2021.113.11
  • 7. Melnyk O, Bychkovsky Y, Onishchenko O, Onyshchenko S, Volianska Y. Development of the method of shipboard operations risk assessment quality evaluation based on experts review. Stud Syst Decis Control 2023,481, 695–710. Springer. doi: https://doi.org/10.1007/978-3-031-35088-7_40
  • 8. Vimala V, Veeramanikandan K, Viswanathan N, Pitchia Krishnan B, Hari S, Madhavan S, Dhinesh S, Karthikeyan V. Analysis of marine propeller using computational fluid dynamics. Mater. Today Proc. 2022,68(6),2375–2381. doi:https://doi.org/10.1016/j.matpr.2022.09.105
  • 9. Wang D, Wang Y, Liu J, Hu Z, Zhang W, Wang Z, Jiang Y. An integrated dynamic modeling method for underwater vehicle with hull, propeller and rudder. Ocean Eng 2023,282,115036. doi: https://doi.org/10.1016/j.oceaneng.2023.115036
  • 10. Aram S, Mucha P. Computational fluid dynamics analysis of different propeller models for a ship maneuvering in calm water. Ocean Eng 2023,276,114226. doi: https://doi.org/10.1016/j.oceaneng.2023.114226
  • 11. Hekkenberg RG. Inland ships for efficient transport chains. PhD thesis, Delft University of Technology, 2013. doi: 10.4233/uuid:f2ead20f-80b5-4d92-818f-7586c7b85f76
  • 12. Lackenby H. The effect of shallow water on ship speed. Shipbuilder Mar Eng 1963,70,446–450
  • 13. Raven H. A new correction procedure for shallow-water effects in ship speed trials. In Proc. 13th Int. Symp.Practical Design of Ships and Other Floating Structures (PRADS 2016), Copenhagen, Denmark, 4–8 Sep2016
  • 14. Schlichting O. Schi_widerstand auf beschrankter wassertiefe: Widerstand von seeschi_en auf flachemwasser [Ship resistance in restricted water depth: Resistance of sea-going vessels in shallow water]. Jahrb Schi_bautech Ges 1934, 35,127
  • 15. Ferreiro LD. The effects of confined water operations on ship performance: A guide for the perplexed. Nav Eng J 1992,104, 69–83
  • 16. Rotteveel E, Hekkenberg R, Ploeg A. Inland ship stern optimization in shallow water. Ocean Eng 2017,141,555–569
  • 17. Tuck EO. Hydrodynamic problems of ships in restricted waters. Annu Rev Fluid Mech 1978, 10,33–46
  • 18. Saha GK, Suzuki K, Kai H. Hydrodynamic optimization of ship hull forms in shallow water. J Mar Sci Technol 2004,9, 51–62. doi: 10.1007/s00773-003-0173-3
  • 19. Franceshi A, Piaggio B, Villa D, Viviani M. Development and assessment of CFD methods to calculate propeller and hull impact on the rudder inflow for a twin-screw ship. Appl Ocean Res 2022,125,103227. doi: https://doi.org/10.1016/j.apor.2022.103227
  • 20. Melnyk O, Onishchenko O, Onyshchenko S, Shumylo O, Volyanskyy S, Bondar A, Cheredarchuk N. Application of fuzzy controllers in automatic ship motion control systems. Int J Electr Comput Eng 2023,13,4,3948–3957. doi: https://doi.org/10.11591/ijece.v13i4.pp3948-3957
  • 21. Shumylo O, Yarovenko V, Malaksiano M, Melnyk O. Comprehensive assessment of hull geometry influence of a modernized ship on maneuvering performance and propulsion system parameters. Pomorstvo 2023,37,2,314–325. doi: https://doi.org/10.31217/p.37.2.13
  • 22. Ferziger JH, Peric M. Computational methods for fluid dynamics. Springer, Berlin Heidelberg, 2002. doi:10.1007/978-3-642-56026-2
  • 23. Illes L, Jurkovič M, Kalina T, Gorzelanczyk P, Ľuptak V. Methodology for optimising the hull shape of a vessel with restricted draft. Sci J Silesian Univ Technol Ser Transp 2021,110,57–71. ISSN: 0209-3324. doi: 10.20858/sjsutst.2021.110.5
  • 24. Illes L, Kalina T, Jurkovic M, Luptak V. Distributed propulsion systems for shallow draft vessels. J Mar Sci Eng 2020, 8,667. doi: https://doi.org/10.3390/jmse8090667
  • 25. Illes L, Jurkovic M, Kalina T, Sosedova J, Gorzelanczyk P, Stopka O, Kubjatko T. Concept and performance analysis of propulsion units intended for distributed ship systems. J Mar Sci Eng 2022, 10,448. doi: https://doi.org/10.3390/jmse10040448
  • 26. Kudelas D. Basic of computer flow modelling and visualization. Faculty of Mining, Ecology, Process Control and Geotechnologies: Kosice, Slovakia, 2017
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d460d52-57c2-4212-a52b-99c1617a4740
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.