PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of copper content on the structure and properties of aluminium alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Designing new aluminium alloys always requires an assessment of the influence of modified contents of the main alloying additions on the required properties for a specific application. The aim of this study was to develop a new alloy with a higher tensile strength than the tensile strength obtained in typical 6xxx series alloys, with a satisfactory hot extrusion ductility. The article presents the results of studies on the influence of copper additions, in three variants, on the structure and mechanical properties of extruded aluminium profiles in various heat treatment states. The base reference for the presented studies was the following aluminium alloys: AlMgSi (EN AW-6063) and AlCuMgMn (EN AW-2017). On this basis, three alloy variants with Cu contents of 2.5, 3.5 and 4.5 weight % were selected. These alloys were cast by vertical semi-continuous casting in the form of ingots with a diameter of 100 mm. Hot deformation studies were carried out in the process of co-extrusion on a semi-industrial line consisting of a horizontal 5 MN press together with auxiliary devices. The extruded profiles were free from defects that could have resulted from the process, such as overheating, cracks and blisters. The materials in the form of extruded profiles, in the heat treatment states T1 and T4, were characterised in terms of structure and mechanical properties. The variants with Cu contents of 2.5 wt% and 3.5 wt% had comparable structure and grain size, and the variant with 4.5 wt% Cu had a finer microstructure. For the studied alloys after heat treatment, higher the strength, higher the Cu content in the alloy, ranging from 445 to 543 MPa. It has been found that it is possible to develop modified aluminium alloys based on the 6xxx series with an increased copper addition (but still below the content typical for Al alloys of the 2xxx series) that will have a strength above 400 MPa. The first variant of the new alloy with a Cu content of 2.5 wt% meets the set goal and meets the requirements set at the beginning of the studies.
Rocznik
Strony
art. no. e8, 2024
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Łukasiewicz Research Network, Institute of Non- Ferrous Metals, Division in Skawina, Pilsudskiego 19, 32-050 Skawina, Poland
  • Łukasiewicz Research Network, Institute of Non- Ferrous Metals, Division in Skawina, Pilsudskiego 19, 32-050 Skawina, Poland
  • Łukasiewicz Research Network, Institute of Non- Ferrous Metals, Division in Skawina, Pilsudskiego 19, 32-050 Skawina, Poland
autor
  • Łukasiewicz Research Network, Institute of Non- Ferrous Metals, Division in Skawina, Pilsudskiego 19, 32-050 Skawina, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • 1. https://www.world-aluminium.org/statistics/#linegraph, accessed12.11.2021.
  • 2. Mroczka K, Wójcicka A, Kurtyka P. Aluminum alloy in different heat treatment conditions. Acta Metall Slovaca.2012;18(2–3):82–91.
  • 3. PN-EN 573–3:2019–12 Aluminium and aluminium alloys -Chemical composition and form of wrought products - Part 3:Chemical composition and form of products.
  • 4. Przybyłowicz K.: Metaloznawstwo, Wydawnictwo Naukowo-Techniczne, Warszawa 1994.
  • 5. Martin JW Precipitation Hardening: Theory and Applications, Butterworth-Heinemann, 2012.
  • 6. Abdelaziz MH, Elgallad EM, Doty HW, Samuel FH. Strengthening precipitates and mechanical performance of Al–Si–Cu–Mg cast alloys containing transition elements. Mater Sci Eng A.2021;820:141497.
  • 7. Mondolfo LF. Aluminium alloys. Structure and properties: Butterworths; 1979.
  • 8. Phragmen G. On the phases occurring in alloys of aluminum with copper, magnesium, manganese, iron and silicon. J Inst Metals.1950;77:498–553.
  • 9. Chakrabarti DJ, Laughlin DE. Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Progr Mater Sci.2004;49:389–410.
  • 10. Arnberg L, Aurivillius B. The crystal structure of AlxCu2Mg12-xSi7, (h-AlCuMgSi). Acta Chem Scand A. 1980;34:1–5.
  • 11. Wang G, Sun Q, Feng L, Hui L, Jing C. Influence of Cu content on ageing behavior of AlSiMgCu cast alloys. Mater Des.2007;28(3):1001–5.
  • 12. Elgallad EM, Zhang Z, Chen X-G. Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy. Mater Sci Eng, A. 2015;625:213–20.
  • 13. Wolverton C. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg. Acta Mater. 2001;49:3129–42.
  • 14. Roman AS, Mendez CM, Gervasi CA, Rebak RB, Alicia E. Corrosion resistance of aluminum-copper alloys with different grain structures. J Mater Eng Perform. 2021;30:131–44.
  • 15. Ebrahimia GR, Zarei-Hanzakib A, Haghshenasb M, Arabshahic H. The effect of heat treatment on hot deformation behaviour of Al 2024. J Mater Process Technol. 2008;206:25–9.
  • 16. Dafang Wu, Yuewu W, Pan Bing Mu, Meng ZL. Mater Des.2012;40:502–9.
  • 17. Elgallad EM, Zhang Z, Chen X-G. Effect of quenching rateon precipitation kinetics in AA2219 DC cast alloy. Physica B.2017;514:70–7.
  • 18. Płonka B, Kłyszewski A, Senderski J, Lech-Grega M. Application of Al alloys, in the form of cast billet, as stock material for the die forging in automotive industry. Arch Civ Mech Eng.2008;8(2):149–56.
  • 19. Senderski J, Lech-Grega M, Płonka B. Studies of advanced technologies used in the manufacture of products from aluminium alloys. Arch Metall Mater. 2011;56:475–86.
  • 20. Hashimoto T, Zhang X, Zhou X, Skeldon P, Haigh SJ, Thompson GE. Investigation of dealloying of S phase (Al2CuMg) in AA2024–T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corros Sci. 2016;103:157–64.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d426213-dd5c-4ac3-b50b-54e2148ceb73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.