PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics simulations of the electrodynamic railgun different constructions and their measurement verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamic characteristics for three types of railgun constructions were simulated and measured in this work. The simplest construction is the iron-less (IL) railgun, while the two other ones (IC and ICPM) have an iron-core. The iron-core permanent magnet (ICPM) railgun additionally has permanent magnets. To compare their characteristics, similar dimensions of the rails and iron cores were adopted, and the same power supply system was used. Numerical magnetic field analyses and our analytical models have been used to determine the electromagnetic parameters. They were verified experimentally. The transient states of the railguns were studied with our field-circuit mathematical model, and their results were also verified by experiments.
Rocznik
Strony
951--969
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
  • Department of Electrical Engineering and Mechatronics Opole University of Technology Prószkowska 76 str., 45-758 Opole, Poland
  • Department of Electrical Engineering and Mechatronics Opole University of Technology Prószkowska 76 str., 45-758 Opole, Poland
  • Department of Electrical Engineering and Mechatronics Opole University of Technology Prószkowska 76 str., 45-758 Opole, Poland
Bibliografia
  • [1] Hundertmark S., Vincent G., Schubert F., Urban J., The NGL-60 Railgun, IEEE Transactions on Plasma Science, vol. 47, no. 7, pp. 3327–3330 (2019), DOI: 10.1109/TPS.2019.2921099.
  • [2] Hundertmark S., Lancelle D., A Scenario for a Future European Shipboard Railgun, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1194–1197 (2015), DOI: 10.1109/TPS.2015.2403863.
  • [3] Gallant J., Vancaeyzeele T., Lauwens B., Wild B., Alouahabi F., Schneider M., Design considerations for an electromagnetic railgun firing intelligent bursts to be used against antiship missiles, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1179–1184 (2015), DOI: 10.1109/TPS.2015.2416774.
  • [4] Lehmann P., Reck B., Vo M.D., Behrens J., Acceleration of a Suborbital Payload Using an Electromagnetic Railgun, IEEE Transactions on Magnetics, vol. 43, no. 1, pp. 480–485 (2007), DOI: 10.1109/TMAG.2006.887666.
  • [5] Siemenn A.E., Deo B., Ng F., Zhou J., Owens C., Atue S.U., Forsuelo M., A Railgun Secondary Propulsion System for High-Speed Hyperloop Transportation, IEEE Transactions on Plasma Science, vol. 51, no. 1, pp. 243–248 (2023), DOI: 10.1109/TPS.2022.3232406.
  • [6] Gores P.A., Vincent G., Schneider M., Spray J.G., Appraisal of Rapid-Fire Electromagnetic Launch Effects on Ceramic Targets, IEEE Transactions on Plasma Science, vol. 47, no. 8, pp. 4175–4180 (2019), DOI: 10.1109/TPS.2019.2921731.
  • [7] Vricella A., Delfini A., Pacciani A., Pastore R., Micheli D., Rubini G., Marchetti M., Santoni F., A new advanced railgun system for debris impact study, Procedia Structural Integrity, vol. 3, pp. 545–552 (2017), DOI: 10.1016/j.prostr.2017.04.044.
  • [8] Poniaev S.A., Bobashev S.V., Zhukov R.O., Sedov A.I., Izotov S.N., Kulakov S.L., Smirnova M.N., Small-size railgun of mm-size solid bodies for hypervelocity material testing, Acta Astronautica, vol. 109, pp. 162–165 (2015), DOI: 10.1016/j.actaastro.2014.11.012.
  • [9] Schneider M., Vincent G., Hogan J.D., Spray J.G., The use of a railgun facility for dynamic fracture of brittle materials, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1162–1166 (2015), DOI: 10.1109/TPS.2015.2396081.
  • [10] Guo X., Dai L., Zhang Q., Lin F., Huang Q., Zhao T., Influences of Electric Parameters of Pulsed Power Supply on Electromagnetic Railgun System, IEEE Transactions on Plasma Science, vol. 43, no. 9, pp. 3260–3267 (2015), DOI: 10.1109/TPS.2014.2349997.
  • [11] Chang X., Yu X., Liu X., Li Z., He H., A Closed-Loop Velocity Control System for Electromagnetic Railguns, IEEE Transactions on Plasma Science, vol. 47, no. 5, pp. 2269–2274 (2019), DOI: 10.1109/TPS.2018.2879798.
  • [12] Siaenen T., Schneider M., Zacharias P., Löffler M.J., Actively Controlling the Muzzle Velocity of a Railgun, IEEE Transactions on Plasma Science, vol. 41, no. 5, pp. 1514–1519 (2013), DOI: 10.1109/TPS.2013.2245672.
  • [13] Waindok A., Piekielny P., Analysis of an iron-core and ironless railguns powered sequentially, Compel, vol. 37, no. 5, pp. 1707–1721 (2018), DOI: 10.1108/COMPEL-12-2017-0533.
  • [14] Vincent G., Hundertmark S., Using the SRn3–60 Railgun in Augmented Mode, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1555–1558 (2015), DOI: 10.1109/TPS.2015.2405572.
  • [15] Jin L., Lei B., Zhang Q., Zhu R., Electromechanical Performance of Rails with Different Cross-Sectional Shapes in Railgun, IEEE Transactions on Plasma Science, vol. 43, no. 5, pp. 1220–1224 (2015), DOI: 10.1109/TPS.2015.2413892.
  • [16] Piekielny P., Waindok A., Transient Analysis of a Railgun with Iron Core, Przegląd Elektrotechniczny, vol. 93, no. 2, pp. 152–155 (2017), DOI: 10.15199/48.2017.02.33.
  • [17] Waindok A., Piekielny P., Transient Analysis of a Railgun with Permanent Magnets Support, Acta Mechanica et Automatica, vol. 11, no. 4, pp. 302–307 (2017), DOI: 10.1515/ama-2017-0046.
  • [18] Tomczuk B., Koteras D., Magnetic Flux Distribution in the Amorphous Modular Transformers, Journal of Magnetism and Magnetic Materials, vol. 323, no. 12, pp. 1611–1615 (2011), DOI: 10.1016/j.jmmm.2011.01.007.
  • [19] Wajnert D., Sykulski J.K., Tomczuk B., An Enhanced Dynamic Simulation Model of a Hybrid Magnetic Bearing Taking Account of the Sensor Noise, Sensors, vol. 20, no. 4, 1116 (2020), DOI: 10.3390/s20041116.
  • [20] Wajnert D., A field-circuit model of the hybrid magnetic bearing, Archive of Mechanical Engineering, vol. 66, no. 2, pp. 191–208 (2019), DOI: 10.24425/ame.2019.128444.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d3f683b-e2a7-411f-8b9b-a9144f08e1ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.