PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of conditions for loss of bearing capacity of underground ammonia pipelines based on the monitoring data and flexible search algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The study aims to diagnose the corrosion current density in the coating defect on the outer surface of the ammonia pipe depending on the distance to the pumping station, taking into account the interaction of media at the soil-steel interface and using modern graphical data visualization technologies and approaches to model such a system. Design/methodology/approach: The use of an automated system for monitoring defects in underground metallic components of structures, in particular in ammonia pipelines, is proposed. The use of the information processing approach opens additional opportunities in solving the problem of defect detection. Temperature and pressure indicators in the pipeline play an important role because these parameters must be taken into account in the ammonia pipeline for safe transportation. The analysis of diagnostic signs on the outer surface of the underground metallic ammonia pipeline is carried out taking into account temperature changes and corrosion currents. The parameters and relations of the mathematical model for the description of the influence of thermal processes and mechanical loading in the vicinity of pumping stations on the corresponding corrosion currents in the metal of the ammonia pipeline are offered. Findings: The paper evaluates the corrosion current density in the coating defect on the metal surface depending on the distance to the pumping station and the relationship between the corrosion current density and the characteristics of the temperature field at a distance L = 0…20 km from the pumping station. The relative density of corrosion current is also compared with the energy characteristics of the surface layers at a distance L = 0…20 km from the pumping station. An information system using cloud technologies for data processing and visualization has been developed, which simplifies the process of data analysis regarding corrosion currents on the metal surface of an ammonia pipeline. Research limitations/implications: The study was conducted for the section from the pumping station to the pipeline directly on a relatively small data set. Practical implications: The use of client-server architecture has become very popular, thanks to which monitoring can be carried out in any corner of the planet, using Internet data transmission protocols. At the same time, cloud technologies allow you to deploy such software on remote physical computers. The use of the Amazon Web Service cloud environment as a common tool for working with data and the ability to use ready-made extensions is proposed. Also, this cloud technology simplifies the procedure of public and secure access to the collected information for further analysis. Originality/value: Use of cloud environments and databases to monitor ammonia pipeline defects for correct resource assessment.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Ivan Franko National University of Lviv, 50 Drahomanova St., Lviv, 79005, Ukraine
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
  • Ukrainian Academy of Printing, 19 Pid Holoskom str., Lviv, 79020, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
Bibliografia
  • [1] M. Polutrenko, P. Maruschak, A. Babii, O. Prentkovskis, Corrosion of pipe steels 20 and 17G1S-U in ground electrolytes with a hydrogen indicator close to neutral, Archives of Materials Science and Engineering 108/1 (2021) 16-23. DOI: https://doi.org/10.5604/01.3001.0015.0249
  • [2] L. Poberezhny, S. Tregubenko, L. Poberezhna, A. Hrytsanchuk, A. Stanetsky, Influence of loads in the process of laying on the resource of sea pipelines, Archives of Materials Science and Engineering 96/2 (2019) 63-72. DOI: https://doi.org/10.5604/01.3001.0013.2385
  • [3] L. Poberezhny, R. Martyniuk, A. Stanetsky, L. Poberezhna, O. Tkach, A. Hrytsanchuk, Estimation of temporary decommissioning impact on reliability and durability of oil pipelines, Journal of Achievements in Materials and Manufacturing Engineering 94/1-2 (2019) 22-31. DOI: https://doi.org/10.5604/01.3001.0013.5118
  • [4] V.B. Volovetskyi, A.V. Uhrynovskyi, Ya.V. Doroshenko, O.M. Shchyrba, Yu.S. Stakhmych, Developing a set of measures to provide maximum hydraulic efficiency of gas gathering pipelines, Journal of Achievements in Materials and Manufacturing Engineering 101/1 (2020) 27-41. DOI: https://doi.org/10.5604/01.3001.0014.4088
  • [5] V.B. Volovetskyi, Ya.V. Doroshenko, G.M. Kogut, A.P. Dzhus, I.V. Rybitskyi, J.I. Doroshenko, O.M. Shchyrba, Investigation of gas gathering pipelines operation efficiency and selection of improvement methods, Journal of Achievements in Materials and Manufacturing Engineering 107/2 (2021) 59-74. DOI: https://doi.org/10.5604/01.3001.0015.3585
  • [6] O. Mandryk, O. Vytyaz, L. Poberezhny, Y. Mykhailiuk, Increase of the technogenic and ecological safety of the natural gas transportation due to displacement of explosive mixtures with nitrogen, Archives of Materials Science and Engineering 106/1 (2020) 17-27. DOI: https://doi.org/10.5604/01.3001.0014.5929
  • [7] V. Lozovan, R. Dzhala, R. Skrynkovskyy, V. Yuzevych, Detection of specific features in the functioning of a system for the anti-corrosion protection of underground pipelines at oil and gas enterprises using neural networks, Eastern-European Journal of Enterprise Technologies 1/5(97) (2019) 20-27. DOI: https://doi.org/10.15587/1729-4061.2019.154999
  • [8] V. Yuzevych, F. Horbonos, R. Rogalskyi, I. Yemchenko, M. Yasinskyi, Determination of the place depressurization of underground pipelines in the monitoring of oil and gas enterprises, International Journal of Recent Technology and Engineering 9/1 (2020) 2274-2281. DOI: http://doi.org/10.5281/zenodo.3841287
  • [9] V. Yuzevych, A. Pavlenchyk, V. Lozovan, N. Mykhalitska, M. Bets, Diagnostics of temperature regime of technological environments of underground pipelines in the monitoring system of oil and gas enterprises for providing of safe exploitation, International Journal of Recent Technology and Engineering 9/1 (2020) 1301-1307. DOI: http://doi.org/10.35940/ijrte.A2421.059120
  • [10] Ya. Doroshenko, V. Zapukhliak, Ya. Grudz, L. Poberezhny, A. Hrytsanchuk, P. Popovych, O. Shevchuk, Numerical simulation of the stress state of an erosion-worn tee of the main gas pipeline, Archives of Materials Science and Engineering 101/2 (2020) 63- 78. DOI: https://doi.org/10.5604/01.3001.0014.1192
  • [11] V. Lozovan, R. Skrynkovskyy, V. Yuzevych, M. Yasinskyi, G. Pawlowski, Forming the toolset for development of a system to control quality of operation of underground pipelines by oil and gas enterprises with the use of neural networks, Eastern-European Journal of Enterprise Technologies 2/5(98) (2019) 41-48. DOI: http://dx.doi.org/10.15587/1729- 4061.2019.161484
  • [12] A. Barletta, E. Zanchini, S. Lazzari, A. Terenzi, Numerical study of heat transfer from an offshore buried pipeline under steady-periodic thermal boundary conditions, Applied Thermal Engineering 28/10 (2008) 1168-1176. DOI: https://doi.org/10.1016/j.applthermaleng.2007.08.004
  • [13] M. Čarnogurská, M. Příhoda, R. Dobáková, T. Brestovič, Model of heat losses from underground heat distribution system 1889/1 (2017) 020003. DOI: https://doi.org/10.1063/1.5004337
  • [14] L. Yuzevych, R. Skrynkovskyy, V. Yuzevych, V. Lozovan, G. Pawlowski, M. Yasinskyi, I. Ogirko, Improving the diagnostics of underground pipelines at oil-and-gas enterprises based on determining hydrogen exponent (PH) of the soil media applying neural networks, Eastern-European Journal of Enterprise Technologies 4/5(100) (2019) 56-64. DOI: http://dx.doi.org/10.15587/1729-4061.2019.174488
  • [15] B. Varghese, R. Buyya, Next generation cloud computing: New trends and research directions, Future Generation Computing Systems 79/3 (2017) 849-861. DOI: https://doi.org/10.1016/j.future.2017.09.020
  • [16] K. Gottschalk, S. Graham, H. Kreger, J. Snell, Introduction to Web services architecture, IBM Systems Journal 41/2 (2002) 170-177. DOI: https://doi.org/10.1147/sj.412.0170
  • [17] O. Kruzhilko, V. Maystrenko, V. Kalinchyk, Y. Polukarov, L. Mitiuk, N. Bilotserkivska, L. Borysova, T. Kachur, Development of the effective information and analytical support of the OSH management system, Journal of Achievements in Materials and Manufacturing Engineering 99/2 (2020) 72-84. DOI: https://doi.org/10.5604/01.3001.0014.1777
  • [18] R. Payal, A.P. Singh, A Study on different hardware and cloud based internet of things platforms, Journal of Physics: Conference Series 1916 (2021) 012055. DOI: https://doi.org/10.1088/1742-6596/1916/1/012055
  • [19] S. Kumar, A review on client-server based applications and research opportunity, International Journal of Scientific Research 10/7 (2019) 33857-33862. DOI: http://dx.doi.org/10.24327/ijrsr.2019.1007.3768
  • [20] P.M. Mishra, K.K. Rout, S.R. Salkuti, Modern tools and current trends in web-development, Indonesian Journal of Electrical Engineering and Computer Science 24/2 (2021) 978-985. DOI: https://doi.org/10.11591/ijeecs.v24.i2.pp978-985
  • [21] M.A. Kamal, H.W. Raza, M.M. Alam, M.M. Su’ud, Highlight the features of AWS, GCP and Microsoft Azure that have an impact when choosing a cloud service provider 8/5 (2020) 4124-4132. DOI: https://doi.org/10.35940/ijrte.D8573.018520
  • [22] B. Bohm, On transient heat losses from buried district heating pipes, International Journal of Energy Research 24/15 (2000) 1311-1334. DOI: https://doi.org/10.1002/1099- 114x(200012)24:15<1311::aid-er648>3.0.co;2-q
  • [23] Chapter 12: District Heating and Cooling, Handbook. HVAC Systems and Equipment, ASHRAE, Atlanta, 2012.
  • [24] J. Yi, Methods of heat transfer analysis of buried pipes in district heating and cooling systems, Applied Engineering 2/2 (2018) 33-38.
  • [25] S. Cividino, G. Egidi, I. Zambon, A. Colantoni, Evaluating the degree of uncertainty of research activities in Industry 4.0., Future Internet 11/9 (2019) 196. DOI: https://doi.org/10.3390/fi11090196
  • [26] L. Yuzevych, R. Skrynkovskyy, B. Koman, Development of information support of quality management of underground pipelines, EUREKA: Physics and Engineering 4 (2017) 49-60. DOI: https://doi.org/10.21303/2461-4262.2017.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d3f1c67-485d-418b-b823-9e53523b6707
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.