PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Forming of Acid Mine Drainage Based on Characteristics of Coal Mining, East Kalimantan, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As one of the world’s coal producers, Indonesia continues to increase its coal production. The purpose of this study is to identify and analyze the characteristics of coal that has the potential to produce acid mine drainage. The research method is coal mapping and zoning based on formation, observation, and description of coal characteristics, coal sampling, ultimate and proximate testing, and analysis. The results of the study describe the characteristics of coal related to distribution in the early stages of evaluating the potential for acid mine formation, besides that it can be used as a basis for classifying the potential for acid mine drainage which has a high enough total sulfur based on the results of testing on 15 samples. To prevent the reaction to acid mine drainage, it can be based on the geochemical characteristics of coal by constructing a mine reservoir or making water drainage in a mine that is not close to the stockpile, because there is a possibility that water has the potential to form acid mine drainage (AMD) when it comes in contact with coal potential. So that coal does not have the potential to be a source of acid mine drainage.
Rocznik
Strony
301--310
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Mining Engineering Department, Faculty of Engineering, Bandung Islamic University, UNISBA Dean Building, Fl.5, Tamansari 24-26, Bandung, 40116, Indonesia
autor
  • National Research and Innovation Agency, Jakarta, Indonesia
  • Industrial Engineering Department, Faculty of Engineering, Bandung Islamic University, UNISBA Dean Building, Fl.5, Tamansari 24-26, Bandung, 40116, Indonesia
autor
  • Faculty of Geological Engineering, Padjadjaran University, Jatinangor, Sumedang District, 45363, Indonesia
  • Mining Engineering Department, Faculty of Engineering, Bandung Islamic University, UNISBA Dean Building, Fl.5, Tamansari 24-26, Bandung, 40116, Indonesia
  • Mining Engineering Department, Faculty of Engineering, Bandung Islamic University, UNISBA Dean Building, Fl.5, Tamansari 24-26, Bandung, 40116, Indonesia
  • Mining Engineering Department, Faculty of Engineering, Bandung Islamic University, UNISBA Dean Building, Fl.5, Tamansari 24-26, Bandung, 40116, Indonesia
  • Faculty of Geological Engineering, Padjadjaran University, Jatinangor, Sumedang District, 45363, Indonesia
Bibliografia
  • 1. Acharya, B.S., Kharel, G. 2020. Acid mine drainage from coal mining in the United States – An overview. Journal of Hydrology, 588, 125061. https://doi.org/10.1016/j.jhydrol.2020.125061
  • 2. Andri, Abdullah. 2007. Analysis of Geochemical Test Parameters to Predict the Potential of Acid Mine Water Formation in Coal Mines. [Final Project]. ITB.
  • 3. Casagrande, D.J., Siefert, K., Berschinski, C., Sutton, N. 1987. Sulfur In The Peat-Forming System.
  • 4. Cerqueira, B., Vega, F.A., Silva, L.F.O., Andrade, L. 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Science of The Total Environment, 421–422, 220–229. https://doi.org/10.1016/j.scitotenv.2012.01.055
  • 5. Demchuk, T.D. 1992. Epigenetic pyrite in a low sulfur, sub-bituminous coal from the central Alberta Plains. International Journal of Coal Geology, 21.
  • 6. Dutta, M., Islam, N., Rabha, S., Narzary, B., Bordoloi, M., Saikia, D., Silva, L.F.O., Saikia, B.K. 2020. Acid mine drainage in an Indian high-sulfur coal mining area: Cytotoxicity assay and remediation study. Journal of Hazardous Materials, 389, 121851. https://doi.org/10.1016/j.jhazmat.2019.121851
  • 7. Van Krevelen D.W. 1981. Coal Science and Technology 3. Elsevier Scientific Publishing Company.
  • 8. Fahruddin. 2010. Environmental Biotechnology. Alfabeta.
  • 9. Frankie, K.A., Hower, J.C. 1987. variation in pyrite size, form, and microlithotype association in the Springfield and Herrin Coals, Clean Coal Technology (22nd ed.).
  • 10. Gautama R.S. 2012. Management of Acid Mine Water, Reclamation and Post-mining Technical Guidance on Mineral and Coal Mining Activities. KESDM.
  • 11. Gilang W., et al. 2016. Visual Identification of PAF and NAF Rocks Case Study at P.T. Arutmin Indonesia Asam-Asam [Postgraduate Program]. Lambung Mangkurat University.
  • 12. Griya, Perkasayuda. 2020. Identification of Geotechnical Drill Acid Water Through the Static Test Method in Coal Mining at PT GHI Paser Regency. Bandung Islamic University.
  • 13. Huisamen, A., Wolkersdorfer, C. 2016. Modelling the hydrogeochemical evolution of mine water in a decommissioned opencast coal mine. International Journal of Coal Geology, 164, 3–12. https://doi.org/10.1016/j.coal.2016.05.006
  • 14. Cantrell K.J., Serkiz S.M. 2003. Evaluation of Acid Neutralizing Capacity Data for Solutions Containing Natural Organic Acids. In Elsevier Scientific Publishing Company. Elsevier Scientific Publishing Company.
  • 15. Marten M. 2013. Identification of the Potential of Acid Mine Water Formation, NAPP vs. NTAPP, Guidebook. P.T. Trubanindo Coal Mining.
  • 16. Meyers, Beat. 1976. Element Sulfur. University of Washington.
  • 17. Mohanty, A.K., Lingaswamy, M., Rao, V.G., Sankaran, S. 2018. Impact of acid mine drainage and hydrogeochemical studies in a part of Rajrappa coal mining area of Ramgarh District, Jharkhand State of India. Groundwater for Sustainable Development, 7, 164–175. https://doi.org/10.1016/j.gsd.2018.05.005
  • 18. Murata, S., Hosokawa, M., Kidena, K., Nomura, M. 2000. Analysis of oxygen-functional groups in brown coals. Fuel Processing Technology, 67(3), 231–243. https://doi.org/10.1016/S0378-3820(00)00102-8
  • 19. Ogunsola, O.I. 1993. Thermal upgrading effect on oxygen distribution in lignite. Fuel Processing Technology, 34(1), 73–81. https://doi.org/10.1016/0378-3820(93)90062-9
  • 20. Oliveira, M.L.S., Ward, C.R., Sampaio, C.H., Querol, X., Cutruneo, C.M.N.L., Taffarel, S.R., Silva, L.F.O. 2013. Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. International Journal of Coal Geology, 116–117, 75–92. https://doi.org/10.1016/j.coal.2013.07.002
  • 21. Rembah, Rina. 2014. Testing the Quality of Acid Mine Water at the Coal Mine of P.T. Bukit Asam. Sembilanbelas Nopember University.
  • 22. Sakaguchi, M., Laursen, K., Nakagawa, H., Miura, K. 2008. Hydrothermal upgrading of Loy Yang Brown coal — Effect of upgrading conditions on the characteristics of the products. Fuel Processing Technology, 89(4), 391–396. https://doi.org/10.1016/j.fuproc.2007.11.008
  • 23. Silva, L.F.O., Fdez-Ortiz de Vallejuelo, S., Martinez-Arkarazo, I., Castro, K., Oliveira, M.L.S., Sampaio, C.H., de Brum, I.A.S., de Leão, F.B., Taffarel, S.R., Madariaga, J.M. 2013. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage. Science of The Total Environment, 447, 169–178. https://doi.org/10.1016/j.scitotenv.2012.12.013
  • 24. Stach, E., Mackowsky, M.T.H., Teichmuller, M., Taylor, G.H., Chandra, D. Teichmuller. 1982. Stach’s text book of coal petrology (3rd ed.). Gebruder.
  • 25. Suits, S.N., Arthur M.A. 2000. Sulfur diagenesis and partitioning in Holocene Peru shelf and upper sediments, Chemical Geology.
  • 26. Tang, H., Luo, J., Zheng, L., Liu, C., Li, H., Wu, G., Zeng, M., Bai, X. 2021. Characteristics of pores in coals exposed to acid mine drainage. Energy Reports, 7, 8772–8783. https://doi.org/10.1016/j.egyr.2021.11.055
  • 27. Winarno, A., Amijaya, D.H., Harijoko, A. 2019. Karakteristik batubara formasi pulaubalang dan balikpapan cekungan kutai bawah, kalimantan timur. Jurnal GEOSAPTA, 5(1), 57. https://doi.org/10.20527/jg.v5i1.5500
  • 28. Wright, I.A., Belmer, N., Davies, P.J. 2017. Coal Mine Water Pollution and Ecological Impairment of One of Australia’s Most ‘Protected’ High Conservation-Value Rivers. Water, Air, & Soil Pollution, 228(3), 90. https://doi.org/10.1007/s11270-017-3278-8
  • 29. Yang, Y., Li, Z., Si, L., Gu, F., Zhou, Y., Qi, Q., Sun, X. 2017. Study Governing the Impact of Long-Term Water Immersion on Coal Spontaneous Ignition. Arabian Journal for Science and Engineering, 42(4), 1359–1369. https://doi.org/10.1007/s13369-016-2245-9
  • 30. Yudhistira, et al. 2011. Study of the Impact of Environmental Damage Due to Sand Mining Activities in Keningar Village, Mount Merapi Area. Journal of Environmental Science.
  • 31. Yunita, Purnamasari. 2000. Making Briquettes from Low Quality Coal Using Non-Carbonization Processes by Adding MgO and MgCl2. UPN Veteran East Java.
  • 32. Zulkarnain, A., A.M.D. 2012. Geochemical Modeling of Rock Covering the Block 9 Binungan Area of P.T. Berau Coal. The 4th Seminar on Acid Mine Water in Indonesia.
  • 33. Galhardi, J.A., Bonotto, D.M. 2016. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environmental Science and Pollution Research, 23(18), 18911–18927. https://doi.org/10.1007/s11356-016-7077-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d39633a-15ae-4166-8a3e-f8e1aa014950
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.