PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational Methods of the Identification of Chaboche Isotropic-Kinematic Hardening Model Parameters Derived from the Cyclic Loading Tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Chaboche-Lemaitre combined isotropic-kinematic hardening model (CKIH) gives an overall information about the material behaviour under cyclic loading. The identification of hardening parameters is a difficult and time-consuming problem. The procedure of the parameters identification using the experimental hysteresis curve obtained in a cyclic loading test under strain control is presented in details here for a S235JR construction steel. The last stabilized cycle extracted from the hysteresis curve is required for the identification of hardening parameters. The model with three backstresses is tested here. The optimization algorithm is also used for the improvement of the agreement between experimental and numerical data. In order to include some uncertainty of experiment and the identification procedure, the authorial algorithm written on the basis of the fuzzy logic soft-computing method is applied here. The results obtained show that the identification procedure presented in this paper ensures the good agreement between the experimental tests and numerical calculations. The correct selection of parameters associated with the hardening is essential for the right description of material behaviour subject to loading in different engineering problems, including in metal forming processes.
Twórcy
  • Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Department of Metal Forming, Faculty of Mechanical Engineering, Lublin University of Technology
  • Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Department of Metal Forming, Faculty of Mechanical Engineering, Lublin University of Technology
Bibliografia
  • 1. Rippan R., Hohenwarter A. Fatigue crack closure: a review of the physical phenomena. Fatigue & Fracture of Engineering Materials & Structures 2017; 40(4): 471-495.
  • 2. Resapu R.R., Perumahanthi L.R. Numerical study of bilinear isotropic & kinematic elastic-plastic response under cyclic loading. Materials Today: Proceedings 2021; 39(4): 1647-1654.
  • 3. Hashemi E., Farshi B. Cyclic Loading of Beams Based on Kinematic Hardening Models: A Finite Element Approach. International Journal of Modeling and Optimization 2011; 1(3): 210-215.
  • 4. Mahbadi H., Eslami M.R. Cyclic loading of beams based on Prager and Frederick-Armstrong kinematic hardening models. International Journal of Mechanical Sciences 2002; 44(5): 859-879.
  • 5. Shojaei A.K., Eslami M.R., Mahbadi H. Cyclic loading of beams based on the Chaboche model. International Journal of Mechanical Sciences 2010; 6(3): 217-228.
  • 6. Xing R., Yu D., Shi S., Chen X. Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path. International Journal of Plasticity 2019; 120: 127-146.
  • 7. Bai J., Jin K., Kou Y. Loading history effect on ratcheting behaviour: Modelling and simulation. International Journal of Mechanical Sciences 2023; 252: 108379.
  • 8. Kobelev V. Some basic solutions for nonlinear creep. International Journal of Solids and Structures 2014; 51(19-20): 3372-3381.
  • 9. Suchocki C., Kowalewski Z. A new method for identification of cyclic plasticity model parameters. Archives of Civil and Mechanical Engineering 2022; 22: 69.
  • 10. Wójcik M., Skrzat A. Coupled Thermomechanical Eulerian-Lagrangian Analysis of the KOBO Extrusion Process. Archives of Metallurgy and Materials 2022; 67(3): 1185-1193.
  • 11. Wójcik M., Skrzat A. The Coupled Eulerian-Lagrangian Analysis of the KOBO Extrusion Process. Advances in Science and Technology Research Journal 2021; 15(1): 197-208.
  • 12. Mahmoudi A.H., Badnava H., Pezeshki-Najafabadi S.M. An application of Chaboche model to predict uniaxial and multiaxial ratcheting. Procedia Engineering 2011; 10: 924-1929.
  • 13. Xu X., Wang Z., Zhang X., Gao G., Wang P., Kan Q. Strain amplitude-dependent cyclic softening behaviour of carbide-free bainitic rail steel: Experiments and modeling. International Journal of Fatigue 2022; 161: 106922.
  • 14. Zobec P., Klemenc J. Application of a nonlinear kinematic-isotropic material model for the prediction of residual stress relaxation under a cyclic load. International Journal of Fatigue 2021; 150: 106290.
  • 15. Wagoner R.H., Lim H., Lee M.-G. Advanced Issues in springback. International Journal of Plasticity 2013; 45: 3-20.
  • 16. Xue L., Shang D.G., Li D.-H., Xia Y. Unified Elastic-Plastic Analytical Method for Estimating Notch Local Strains in Real Time under Multiaxial Irregular Loading. Journal of Materials Engineering and Performance 2021; 30: 9302-9314.
  • 17. Zhu Y., Kang G., Kan Q., Bruhns O., Liu Y. Thermomechanically coupled cyclic elasto-viscoplastic constitutive model of metals: Theory and application. International Journal of Plasticity 2016; 76: 111-152.
  • 18. Liu S., Liang G., Yang Y. A strategy to fast determine Chaboche elasto-plastic model parameters by considering ratcheting. International Journal of Pressure Vessels and Piping 2019; 172, 251-260.
  • 19. Hai L.-T., Li G.-Q., Wang Y.-B., Wang Y.-Z. A fast calibration approach of modified Chaboche hardening rule for low yield point steel, mild steel and high strength steels. Journal of Building Engineering 2021; 38: 102168.
  • 20. Wójcik M., Skrzat A. Identification of Chaboche-Lemaitre combined isotropic-kinematic hardening model parameters assisted by the fuzzy logic analysis. Acta Mechanica 2021; 232: 685-708.
  • 21. Wójcik M., Skrzat A. Fuzzy logic enhancement of material hardening parameters obtained from tension-compression test. Continuum Mechanics and Thermodynamics 2020; 32: 959-969.
  • 22. Lee C.-H., Do V.N.V., Chang K.-H. Analysis of uniaxial ratcheting behavior and cyclic mean stress relaxation of a duplex stainless steel. International Journal of Plasticity 2014; 62: 17-33.
  • 23. Agius D., Kajtaz M., Kourousis K.I., Wallbrink C., Wang C.H., Hu W., Silva J. Sensitivity and optimization of the Chaboche plasticity model parameters is strain-life fatigue predictions. Materials & Design 2017; 118: 107-121.
  • 24. Ding J., Kang G., Kan Q., Liu Y. Constitutive model for uniaxial time-dependent ratcheting of 6061-T6 aluminum alloy. Computational Materials Science 2012; 57: 67-72.
  • 25. Hamidinejad S.M., Varvani-Farahani A. Ratcheting assessment of steel samples under various non-proportional loading paths by means of kinematic hardeningnrules. Materials & Design 2015; 815, 367-376.
  • 26. Moslemi N., Zardian M.G., Ayob A., Redzuan N., Rhee S. Evaluation of Sensitivity and Calibration of the Chaboche Kinematic Hardening Model Parameters for Numerical Ratcheting Simulation. Applied Science 2019; 9(12): 2578.
  • 27. Cao W., Yang J., Zhang H. Unified constitutive modeling of Haynes 230 including cyclic hardening/softening and dynamic strain aging under isothermal low-cycle fatigue and fatigue-creep loads. International Journal of Plasticity 2021; 138: 102922.
  • 28. Burgold A., Droste M., Seupel A., Budnitzki M., Biermann H., Kuna M. Modeling of the cyclic deformation behaviour of austenitic TRIP-steels. International Journal of Plasticity 2020; 133: 102792.
  • 29. Egner W., Sulich P., Mroziński S., Egner H. Modelling thermo-mechanical cyclic behavior of P91 steel. International Journal of Plasticity 2020; 135: 102820.
  • 30. Okorokov V., Gorash Y., Mackenzie D., van Rijswick R. New formulation of nonlinear kinematic hardening model, Part II: Cyclic hardening/softening and ratcheting. International Journal of Plasticity 2019; 122: 244-267.
  • 31. Hwang J.-H., Kim H.-T., Kim Y.-J., Nam H.-S., Kim J.-W. Crack tip field at crack initiation and growth under monotonic and large amplitudę cycle loading: Experimental and FE analyses. International Loading of fatigue 2020; 141: 105889.
  • 32. Song Z., Komvopoulos K. An elastic-plastic analysis of spherical indentation: Constitutive equations for single-indentation unloading and development of plasticity due to repeated indentation. Mechanics of Materials 2014; 76: 93-101.
  • 33. Lam Wing Cheong M.F., Rouse J.P., Hyde C.J., Kennedy A.R. The Prediction of isothermal cyclic plasictity in 7175-T7351 aluminium alloy with particular emphasis on thermal ageing effects. International Journal of Fatigue 2018; 114: 92-108.
  • 34. Esmaeili A., Walia M.S., Handa K., Ikeuchi K., Ekh M., Vernersson T., Ahlström J. A methodology to predict thermomechanical cracking of railway wheel treads: From experiments to numerical predictions. International Journal of Fatigue 2017; 105: 71-85.
  • 35. Abueidda D.W., Koric S., Sobh N.A., Sehitoglu H. Deep learning for plasticity and thermos-viscoplasticity. International Journal of Plasticity 2021; 136: 02852.
  • 36. Nath A., Ray K.K. Barai S.V. Evaluation of ratcheting behaviour in cyclically stable steels through use of a combined kinematic-isotropic hardening rule and a genetic algorithm optimization technique. International Journal of Mechanical Sciences 2019; 152: 138-150.
  • 37. Nath A., Barai S.V., Ray K.K. Studies on the experimental and simulated cyclic-plastic response of structural mild steels. Journal of Constructional Steel Research 2021; 182: 106652.
  • 38. Badnava H., Pezeshki S.M., Nejad K.F., Farhoudi H.R. Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method. Journal of Mechanical Science and Technology 2012; 26: 3067-3072.
  • 39. Skrzat A., Wójcik M. An identification of the material hardening parameters for cyclic loading – experimental and numerical studies. Archives of Metallurgy and Materials 2020; 65(2): 779-786.
  • 40. Santus C. Grossi T., Romanelli L., Pedranz M., Benedetti M. A computationally fast and accurate procedure for the identification of the Chaboche isotropic-kinematic hardening model parameters based on straincontrolled cycles and asymptotic ratcheting rate. International Journal of Plasticity 2023;160: 103503.
  • 41. Chaboche J.L. Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity 1986; 2(2): 149-188.
  • 42. Mahmoudi A.H., Pezeshki-Najafabadi S.M., Badnava H. Parameter determination of Chaboche kinematic hardening model using a multi objective Genetic Algorithm. Computational Materials Science 2011; 50(3):1114-1122,
  • 43. Srnec Novak J., De Bona F., Benasciutti D. Benchmarks for accelerated cyclic plasticity models with finite elements. Metals 2020; 10(6): 781.
  • 44. Borges M.F., Antunes F.V., Prates P.A., Branco R.A Numerical study of the effect of isotropic hardening parameters on mode I fatigue crack growth. Metals 2020; 10(2): 177.
  • 45. Szala M., Winiarski G., Bulzak T., Wójcik Ł. Microstructure and hardness of cold forged 42CrMo4 steel hollow component with the outer flange. Advances in Science and Technology Research Journal 2022; 16(4): 201-210.
  • 46. Chaboche, J.L. Modeling of ratcheting: evolution of various approaches. European Journal of Mechanics A/Solids 1994; 13: 501-518.
  • 47. Chaboche J.L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity 2008; 24:1642–1693.
  • 48. Bari S., Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation. International Journal of Plasticity 2008; 18(7): 873-894.
  • 49. Rezaiee-Pajand M., Sinaie S. the number of backstresses above 3 is not necessary and the application of their higher number does not improve the convergence between experimental and numerical data. International Journal of Solids and Structures 2009; 46(16): 3009-3017.
  • 50. Welling C.A., Marek R., Feigenbaum H.P., Dafalias Y.F., Plesek J., Hruby Z., Parma S. Numerical convergence in simulations of multiaxial ratcheting with directional distortional hardening, International Journal of Solids and Structures 2017; 126-127: 105-121.
  • 51. Dvoršek N., Stopeinig I., Klančnik S. Optimization of Chaboche Material Parameters with a Genetic Algorithm. Materials 2023;16(5): 1821.
  • 52. Gomes V.M.G., Eck S., De Jesus A.M.P. Cyclic hardening and fatigue damage features of 51CrV4 steel for the crossing nose design. Applied Sciences 2023; 13: 8308.
  • 53. Chaparro B.M., Thuillier S., Menezes L.F., Manach P.Y., Fernandes J.V. Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms. Computational Materials Science 2008; 44(2): 339–346.
  • 54. Sinaie S., Heidarpour A., Zhao X.L. A multi-objective optimization approach to the parameter determination of constitutive plasticity models for the simulation of multi-phase load histories. Computers & Structures 2014; 138: 112–132.
  • 55. Petry A., Gallo P., Remes H., Niemelä A. Optimizing the Voce–Chaboche model parameters for fatigue
  • life estimation of welded joints in high-strength marine structures. Journal of Marine Science and Engineering 2022; 10(6): 818.
  • 56. Liu S., Guozhu L. Optimization of Chaboche kinematic hardening parameters by using an algebraic method based on integral equations. Journal of Mechanics of Materials and Structures 2017; 12(4): 439-455.
  • 57. Tsai, K., Chiu, C.: Computer-aided photoelastic analysis of orthogonal 3D textile composites: Part 2. Combining least squares and finite-element methods for stress analysis. Experimental Mechanics 1998; 38: 8-12.
  • 58. Overall J.E., Spiegel, D.K. Concerning least squares analysis of experimental data. Psychological Bulletin 1969; 72(5): 311-322.
  • 59. Usami M., Oya T. Estimation of work-hardening curve for large strain using friction- free compression test. Proceedia Engineering 2014; 81: 371-376.
  • 60. Koutsianitis P., Tairidis G.K., Drosopoulos G.A., Foutsitzi G.A., Stavroulakis G.E. Effectiveness of optimized fuzzy controllers on partially delaminated piezocomposites. Acta Mechanica 2017; 228: 1373-1392.
  • 61. Brooks L. Fuzzy Logic: Theory and Applications. Larsen and Keller Education, 2017.
  • 62. Shahbazova S.N., Sugeno M., Kacprzyk J. Recent developments in fuzzy logic and fuzzy sets. Springer, 2020.
  • 63. Möller, B., Beer, M. Fuzzy Randomness. Uncertainty in civil engineering and computational mechanics. Springer, 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d346d2a-4ca2-40f7-8a6e-c090e5268bf8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.