PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alternatywne kierunki wykorzystania odpadów odlewniczych ze szczególnym uwzględnieniem energetycznego zagospodarowania

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Alternative directions for the use of foundry waste, especially for energy management
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono kierunki zagospodarowania odpadów odlewniczych, przede wszystkim zużytych piasków formierskich (SFS – Spent Foundry Sands) oraz pyłu po regeneracji mas odlewniczych. Ważnym aspektem ochrony środowiska w produkcji odlewniczej jest ograniczenie ilości wytwarzanych odpadów. Można to osiągnąć poprzez regenerację SFS. Dzięki temu powtórnie wykorzystuje się odpady, co zmniejsza koszty zakupu surowców i opłaty środowiskowe związane z ich składowaniem. Zużyte piaski formierskie, które nie nadają się do powtórnego wykorzystania w odlewniach, mogą być stosowane w innych dziedzinach przemysłu. SFS stosuje się najczęściej w drogownictwie i budownictwie oraz jako materiał inertny do wypełniania nieczynnych kopalni (Smoluchowska i Zgut 2005; Bany-Kowalska 2006). Ciekawym rozwiązaniem jest stosowanie SFS w ogrodnictwie i rolnictwie. W artykule przedstawiono zalety i wady takiego wykorzystania. Stwierdzono, że zużyte piaski formierskie mogą być przydatne do produkcji mieszanek glebowych dla wielu zastosowań rolniczych i ogrodniczych. Ze względu na możliwość zanieczyszczenia środowiska metalami ciężkimi i związkami organicznymi takie stosowanie zaleca się dla tak zwanych green sands, czyli SFS ze spoiwami mineralnymi. Poza tym omówiono – proponowane przez niektórych badaczy – nowatorskie rozwiązanie energetycznego wykorzystania pyłów po regeneracji SFS ze spoiwami organicznymi. Okazuje się, że pyły z regeneracji zużytych piasków formierskich ze spoiwami organicznymi, ze względu na wysoki udział substancji organicznych, decydujących o ich wartości opałowej oraz krzemionki, mogą być wykorzystane jako paliwo alternatywne i surowiec w piecach cementowych.
EN
The article presents the directions of foundry waste management, mainly used for spent foundry sands (SFS) and dust after the reclamation of this waste. An important aspect of environmental protection in foundry production is the reduction of the amount of generated waste as a result of SFS regeneration. The advantage is the reuse of waste, which reduces the costs of raw materials purchase and environmental fees for landfilling. Non -recycled spent foundry sands can be used in other industries. SFS is most often used in road and construction industries as well as inert material in closed mines (Smoluchowska and Zgut 2005; Bany-Kowalska 2006). An interesting direction of using SFS is its application in gardening and agriculture. The article presents the advantages and disadvantages of such use. It was found that spent foundry sands can be useful for the production of soil mixtures for many agricultural and horticultural applications. Due to the possibility of environmental pollution with heavy metals and organic compounds, such an application is recommended for the so-called green sands, i.e. SFS with mineral binders. In addition, an innovative solution for the energy use of dusts after spent foundry sands reclamation with organic binders has been discussed and proposed by some researchers. It was shown that dust from reclaimed SFS with organic binders can be used as an alternative fuel and raw material in cement kilns, due to the high percentage of organic substances which determine their calorific value and silica.
Rocznik
Tom
Strony
197--211
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Politechnika Opolska, Opole
Bibliografia
  • [1] Bany-Kowalska, K., 2006. Składowanie odpadowej masy formierskiej – jakie są inne alternatywne rozwiązania? Odlewnictwo-Nauka i Praktyka t. 3–4, s. 60.
  • [2] Bastian, K.C. i Alleman, J.E., 1998. Microtox characterization of foundry sand residuals. Waste Management t. 18, s. 227–234.
  • [3] BAT 2007. Dokument referencyjny dla najlepszych dostępnych technik w kuźnictwie i odlewnictwie. Ministerstwo Środowiska, BAT w kuźnictwie i odlewnictwie – IPPC 2007.
  • [4] Bożym, M. 2018. Zmiana wizerunku miasta w świetle likwidacji hałd pohutniczych. Mazowsze Studia Regionalne t. 24, s. 49–61.
  • [5] Dańko i in. 2013 – Dańko, R., Holtzer, M., Górny, M. i Żymankowska-Kumon, S., 2013. Effect of reclamation on the skin layer of ductile iron cast in furan molds. Journal of Materials Engineering and Performance t. 22, s. 3592–3600.
  • [6] Dańko i in. 2015 – Dańko, R., Holtzer, M. i Dańko, J., 2015. Investigations of physicochemical properties and thermal utilisation of dusts generated in the mechanical reclamation process of spent moulding sands. Archives of Metallurgy and Materials t. 60, wyd. 1, s. 313–318.
  • [7] Dańko i in. 2016 – Dańko, R., Jazierski, J. i Holtzer, M., 2016. Physical and chemical characteristics of after-reclamation dust from used sand moulds. Arabian Journal of Geosciences t. 9, s. 153.
  • [8] Dayton i in. 2010 – Dayton, E.A., Whitacre, S.D., Dungan, R.S. i Basta, N.T., 2010. Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils. Plant and Soil t. 329, s. 27–33.
  • [9] Dungan i in. 2006 – Dungan, R.S., Kukier, U. i Lee, B. 2006. Blending foundry sands with soil: Effect on dehydrogenase activity. Science of the Total Environment t. 357, s. 221–230.
  • [10] Dungan i in. 2009a – Dungan, R.S., Kim, J.S., Weon, H.Y. i Leytem, A.B., 2009. The characterization and composition of bacterial communities in soils blended with spent foundry sand. Annals of Microbiology t. 59 wyd. 2, s. 239–246.
  • [11] Dungan i in. 2009b – Dungan R.S., Huwe J. i Chaney R.L. 2009. Concentrations of PCDD/PCDFs and PCBs in spent foundry sands. Chemosphere t. 75, s. 1232–1235.
  • [12] Dungan, R.S. i Dees, N.H. 2007. Use of spinach, radish, and perennial ryegrass to assess the availability of metals in waste foundry sands. Water Air and Soil Pollution t. 183, s. 213–223.
  • [13] Dungan, R.S., Dees, N.H. 2009. The characterization of total and leachable metals in foundry molding sands. Journal of Environmental Management t. 90, s. 539–548.
  • [14] Grabowska, B. i Holtzer, M. 2008. Możliwości zastosowania biopolimerów jako spoiw mas formierskich i rdzeniowych. Przegląd Odlewnictwa t. 4, s. 212–215.
  • [15] Holtzer, M. 2002. Kierunki rozwoju mas formierskich i redzniowych ze spoiwami nieorganicznymi w aspekcie zmniejszenia negatywnego oddziaływania na środowisko. Archiwum Odlewnictwa t. 2 wyd. 3, s. 50–56.
  • [16] Holtzer, M. 2003. Kierunki rozwoju mas formierskich i rdzeniowych ze spoiwami organicznymi. Archiwum Odlewnictwa, t. 3, wyd. 9, s. 189–196.
  • [17] Holtzer, M. 2011. Światowe tendencje rozwojowe w zakresie mas formierskich i rdzeniowych pod kątem oddziaływania na środowisko. Przegląd Odlewnictwa t. 3–4, s. 112–119.
  • [18] Holtzer, M. 2013. Kierunki rozwoju mas formierskich i rdzeniowych ze spoiwami organicznymi. Archiwum Odlewnictwa t. 3, wyd. 9, s. 189–196.
  • [19] Holtzer i in. 2006 – Holtzer, M., Asłanowicz, M. i Jurczyk, A., 2006. Sposoby zagospodarowania pyłów powstających w procesie regeneracji mechanicznej mas formierskich z żywicą furanową. Przegląd Odlewnictwa t. 9, s. 472–477.
  • [20] Ji i in. 2001 – Ji, S, Wan, L. i Fan, Z. 2001. The toxic compounds and leaching characteristics of spent foundry sands. Water Air and Soil Pollution t. 132, s. 347–64.
  • [21] Lee i in. 2004a – Lee, T., Benson, C. i Eykholt, G. 2004. Waste green sands as reactive media for groundwater contaminated with trichloroethylene (TCE). Journal of Hazardous Materials t. B109, s. 25–36.
  • [22] Lee i in. 2004b – Lee, T., Park, J. i Lee, J., 2004. Waste green sands as reactive media for the removal of zinc from water. Chemosphere t. 56, s. 571–581.
  • [23] Lindsay, B.J. i Logan, T.J. 2005. Agricultural reuse of foundry sand. Review. Journal of Residuals Science and Technology, t. 2, wyd. 1, s. 3–12.
  • [24] Łucarz, M., 2013. The stand adopted for process investigations thermal reclamation. Archives of Foundry Engineering t. 13, wyd. 1, s. 103–106.
  • [25] McCoy, E.L. 1998. Sand and organic amendment influences on soil physical properties related to turf establishment. Agronomy Journal t. 90, s. 411–419.
  • [26] Oliveira i in. 2011 – Oliveira, P.E.F., Oliveira, L.D., Ardisson, J.D. i Lago, R.M., 2011. Potential of modified iron-rich foundry waste for environmental applications: Fenton reaction and Cr(VI) reduction, Journal of Hazardous Materials t. 194, s. 393–398.
  • [27] Raport EPA: Risk Assessment of Spent Foundry Sands In Soil-Related Applications. Evaluating Silica-based Spent Foundry Sand From Iron, Steel, and Aluminum Foundries. EPA-530-R-14-003. October 2014.
  • [28] Royle i in. 2000 – Royle, S.M., Chambers, B.J., Hadden, S.W. i Maslen, S. 2000. Waste management at the dawn of the third millennium [In:] Lindsay, B.J., Logan, T.J., 2005. Agricultural reuse of foundry sand. Review. Journal of Residuals Science and Technology t. 2, wyd. 1, s. 3–12.
  • [29] Smoluchowska, E. i Zgut, M. 2005. Gospodarka odpadami ze zużytych mas formierskich na wilgotno i mieszanek mas. Odlewnictwo-Nauka i Praktyka t. 5, s. 31–33.
  • [30] Zhang i in. 2014 – Zhang, H., Su, L., Li, X., Zuo, J., Liu, G. i Wang, Y., 2014. Evaluation of soil microbial toxicity of waste foundry sand for soil-related reuse. Frontiers of Environmental Science and Engineering t. 8, wyd. 1, s. 89–98.
  • [31] Żymankowska-Kumon, S. i Miś, K. 2014. Wpływ parametrów procesu regeneracji mas formierskich z żywicą furanową na właściwości regeneratu i pyłu poregeneracyjnego. Archives of Foundry Engineering t. 14, wyd. 2, s. 101–104.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d328101-4ea1-468a-9c0d-ffcd37a085ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.