Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new approach has been taken to the problem of straight and bent bar buckling, where bar buckling is considered as a function of axial displacement of one end. It was assumed that the length of a bar being buckled at any instant of buckling is the same as that of a straight bar, regardless of the size of axial displacement of one end of the bar. Based on energy equations, a formula was derived for the value of axial displacement of one bar end or buckling amplitude in the middle of bar length as a function of compressive force. The established relationships were confirmed by simulation tests using the finite element software Midas NFX and by experimental tests.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
57--70
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
autor
- West Pomeranian University of Technology, Poland
autor
- West Pomeranian University of Technology, Poland
autor
- Maritime University of Szczecin, Poland
Bibliografia
- 1. Barretta, R., Fabbrocino, F., Luciano, R., de Sciarra, F.M., & Ruta, G. (2019). Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mechanics of Advanced Materials and Structures, pp. 1-7.
- 2. Bedford, A., & Liechti, K.M. (2020). Buckling of Columns. In Mechanics of Materials (pp. 729-781). Springer International Publishing. https://doi.org/10.1007/978-3-030-22082-2_10.
- 3. Buczkowski, R., & Banaszek, A. (2006). Mechanika ogólna w ujęciu wektorowym i tensorowym: Statyka: Przykłady i zadania. Wydawnictwa Naukowo-Techniczne.
- 4. Chandra, Y., Flores, E.S., & Adhikari, S. (2020). Buckling of 2D nano hetero-structures with moire patterns. Computational Materials Science, 177, 109507.
- 5. Corigliano, P., Crupi, V., & Guglielmino, E. (2019). Mechanical buckling analysis of explosive welded joints used in shipbuilding. International Shipbuilding Progress, 66(1), pp. 17-34.
- 6. Czechowski, L., Kędziora, S., & Kołakowski, Z. (2020). The Buckling and Post-Buckling of Steel C-Columns in Elevated Temperature. Materials, 13(1), 74.
- 7. Dassault-Systèmes. (2010). Abaqus Analysis User’s Manual v.6.10. Dassault Systèmes Simulia Corp.
- 8. Eringen, A.C. (2002). Nonlocal continuum field theories. Springer Science & Business Media.
- 9. Euler, L. (1744). Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes. apud Marcum-Michaelem Bousquet.
- 10. Gere, J.M., & Goodno, B.J. (2009). Mechanics of materials. Cengage learning. Inc.: Independence, KY.
- 11. Harvey, P.S., & Cain, T.M.N. (2020). Buckling of elastic columns with initial imperfections and load eccentricity. Structures, 23, pp. 660-664. https://doi.org/10.1016/j.istruc.2019.09.021.
- 12. Kubit, A., Trzepiecinski, T., Święch, Ł., Faes, K., & Slota, J. (2019). Experimental and Numerical Investigations of Thin-Walled Stringer-Stiffened Panels Welded with RFSSW Technology under Uniaxial Compression. Materials, 12(11), 1785.
- 13. Li, S.-R., & Batra, R.C. (2013). Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams. Composite Structures, 95, 5–9. https://doi.org/10.1016/j.compstruct.2012.07.027.
- 14. Midas, I.T. (2011). User’s Manual of midas NFX. MIDAS IT.
- 15. Nikolić, A., & Šalinić, S. (2017). Buckling analysis of non-prismatic columns: A rigid multibody approach. Engineering Structures, 143, pp. 511-521. https://doi.org/10.1016/j.engstruct.2017.04.033.
- 16. Nistor, M., Wiebe, R., & Stanciulescu, I. (2017). Relationship between Euler buckling and unstable equilibria of buckled beams. International Journal of Non-Linear Mechanics, 95, 151–161. https://doi.org/10.1016/j.ijnonlinmec.2017.06.016.
- 17. Rozylo, P., Ferdynus, M., Debski, H., & Samborski, S. (2020). Progressive Failure Analysis of Thin-Walled Composite Structures Verified Experimentally. Materials, 13(5), 1138.
- 18. Schilling, J.C., & Mittelstedt, C. (2020). Local buckling analysis of omega-stringer-stiffened composite panels using a new closed-form analytical approximate solution. Thin-Walled Structures, 147, 106534. https://doi.org/10.1016/j.tws.2019.106534.
- 19. Shen, M.-Y., Chiou, Y.-C., Tan, C.-M., Wu, C.-C., & Chen, W.-J. (2020). Effect of Wall Thickness on Stress–Strain Response and Buckling Behavior of Hollow-Cylinder Rubber Fenders. Materials, 13(5), 1170.
- 20. Śledziewski, K., & Górecki, M. (2020). Finite Element Analysis of the Stability of a Sinusoidal Web in Steel and Composite Steel-Concrete Girders. Materials, 13(5), 1041.
- 21. Su, Y., Zhao, H., Liu, S., Li, R., Wang, Y., Wang, Y., Bian, J., & Huang, Y. (2019). Buckling of beams with finite prebuckling deformation. International Journal of Solids and Structures, 165, pp. 148-159. https://doi.org/10.1016/j.ijsolstr.2019.01.027.
- 22. Timoshenko, S.P., & Gere, J.M. (2009). Theory of elastic stability. Courier Corporation.
- 23. Toledo, K.K., Kim, H.-S., Jeong, Y.-S., & Kim, I.-T. (2020). Residual Compressive Strength of Short Tubular Steel Columns with Artificially Fabricated Local Corrosion Damage. Materials, 13(4), 813.
- 24. Xu, R., & Wu, Y.-F. (2008). Free vibration and buckling of composite beams with interlayer slip by two-dimensional theory. Journal of Sound and Vibration, 313(3-5), pp. 875-890.
- 25. Zhu, X., Wang, Y., & Dai, H.-H. (2017). Buckling analysis of Euler–Bernoulli beams using Eringen’s two-phase nonlocal model. International Journal of Engineering Science, 116, pp. 130-140. https://doi.org/10.1016/j.ijengsci.2017.03.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d3174c1-a731-45ba-b689-59ddcd2e4a06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.