PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membrane installation for biogas enrichment – Field tests and system simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of the field tests on membrane biogas enrichment performed with the application of mobile membrane installation (MMI) with the feed stream up to 10 Nm3/h. The mobile installation equipped with four hollow fibre modules with polyimide type membranes was tested at four different biogas plants. Two of them were using agricultural substrates. The third one was constructed at a municipal wastewater plant and sludge was fermented in a digester and finally in the fourth case biogas was extracted from municipal waste landfill site. Differences in the concentration of bio-methane in feed in all cases were observed and trace compounds were detected as well. High selectivity polyimide membranes, in proper module arrangements, can provide a product of high methane content in all cases. The content of other trace compounds, such as hydrogen sulphide, water vapour and oxygen on the product did not exceed the values stated by standard for a biogas as a vehicle fuel. The traces of hydrogen sulphide and water vapour penetrated faster to the waste stream enriched in carbon dioxide, which could lead to further purification of the product – methane being hold in the retentate (H2O > H2S > CO2 > O2 > CH4 > N2). In the investigated cases, when concentration of N2 was low and concentration of CH4 higher than 50%, it was possible to upgrade methane to concentration above 90% in a two-stage cascade. To performsimulation ofCH4 andCO2 permeation through polyimide membrane,MATLABwas used. Simulation program has included permeation gaseous mixture with methane contents as observed at field tests in the range of 50 and 60% vol. The mass transport process was estimated for a concurrent hollow fibre membrane module for given pressure and temperature conditions and different values of stage cut. The obtained results show good agreement with the experimental data. The highest degree of methane recovery was obtained with gas concentrating in a cascade with recycling of the retentate.
Rocznik
Strony
235--–260
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Institute of Nuclear Chemistry and Technology. 03-195 Warsaw, Dorodna 16, Poland
  • Department of Chemicaland Process Engineering. Warsaw University of Technology, 00-645 Warsaw, Warynskiego 1, Poland
autor
  • Institute of Nuclear Chemistry and Technology. 03-195 Warsaw, Dorodna 16, Poland
  • Institute of Nuclear Chemistry and Technology. 03-195 Warsaw, Dorodna 16, Poland
  • Institute of Nuclear Chemistry and Technology. 03-195 Warsaw, Dorodna 16, Poland
  • Institute of Nuclear Chemistry and Technology. 03-195 Warsaw, Dorodna 16, Poland
Bibliografia
  • 1. Abu El Ela Mohamed M., Nabawi M., 2008. Changing feed conditions push Egyptian gas plant to upgrade CO2 membrane system. Oil Gas J., 106 (26).
  • 2. Al-Juaied M., Koros W.J., 2005. Performance of natural gas membranes in the presence of heavy hydrocarbons. J. Membr. Sci., 274, 227–243. DOI: 10.1016/j.memsci.2005.08.013.
  • 3. Aroon M.A., Ismail A.F., Montazer-Rahmati M.M., Matsura T., 2010. Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent. Sep. Purif. Technol., 72, 194–202. DOI: 10.1016/j.seppur.2010.02.009.
  • 4. Baker R.W., Lokhandwala K., 2008. Natural gas processing with membranes: An overview. Ind. Eng. Chem. Res., 47, 2109–2121. DOI: 10.1021/ie071083w.
  • 5. Bhide B.D., Stern S.A., 1993. Membrane processes for the removal of acid gases from natural gas. I. Process configurations and optimization of operating conditions. J. Membr. Sci., 81, 3, 209–237. DOI: 10.1016/03767388(93)85175-V.
  • 6. Castellano-Hinojosa A., Armato C., Pozo C., González-Martínez A., González-López J., 2018. New concepts in anaerobic digestion processes: recent advances and biological aspects. Appl. Microbiol. Biot., 102, 5065–5076. DOI: 10.1007/s00253-018-9039-9.
  • 7. Chmielewski A.G., Berbeć A., Zalewski M., Dobrowolski A., 2012. Hydraulic mixing modeling in reactor for biogas production. Chem. Process Eng., 33, 621–628. DOI: 10.2478/v10176-012-0052-8.
  • 8. Chmielewski A.G., Urbaniak A., Wawryniuk K., 2013. Membrane enrichment of biogas from two-stage pilot plant using agricultural waste as a substrate. Biomass Bioenerg., 58, 219–228. DOI: 10.1016/j.biombioe.2013.08.010.
  • 9. Coker D.T., Freeman B.D., Fleming G.K., 1998. Modeling multicomponent gas separation using hollow fibre membrane contactors. AIChE J., 44, 1289–1302. DOI: 10.1002/aic.690440607.
  • 10. DattaA.K.,Sen P.K.,2006. Optimizationofmembrane unitforremovingcarbondioxidefromnatural gas.J.Membr. Sci., 283, 291–300. DOI: 10.1016/j.memsci.2006.06.043.
  • 11. DengL.,HäggM.B.,2010.Techno-economicevaluationofbiogasupgradingprocessusingCO2 facilitatedtransport membrane. Int. J. Greenh. Gas Con., 4, 638–646. DOI: 10.1016/j.ijggc.2009.12.013.
  • 12. Favvas E.P., Katsaros F.K., Sergios K., Papageorgiou S.K., Sapalidis A.A., Mitropoulos A.Ch., 2017. A review of the latest development of polyimide based membranes for CO2 separations. React. Funct. Polym., 120, 104–130. DOI: 10.1016/j.reactfunctpolym.2017.09.002.
  • 13. Feroldi M., Nevesl A.C., Rossato Bach V., Alves H.J., 2016. Adsorption technology for the storage of natural gas and biomethane from biogas. Int. J. Energy Res., 40, 1890–1900. DOI: 10.1002/er.3577.
  • 14. HaiderSh.,LindbråthenA.,HaeggM-B.,2016.Techno-economicalevaluationofmembranebasedbiogasupgrading system: A comparison between polymeric membrane and carbon membrane technology. Green Energy Environ., 1, 222–234. DOI: 10.1016/j.gee.2016.10.003.
  • 15. Harasimowicz M., Zakrzewska-Trznadel G., Mikołajczuk A., Chmielewski A.G., 2004. Methane enrichment of CH4+ CO2 mixture on 2-stage GS membrane module system with circulation stream and chemical final purification. XIX-th Ars Separatoria–Złoty Potok, Poland, 187–189.
  • 16. Harasimowicz M., Orluk P., Zakrzewska-Trznadel G., Chmielewski A.G., 2007. Application of polyimide membranes for biogas purification and enrichment. J. Hazard. Mater., 144, 698–702. DOI: 10.1016/j.jhazmat.2007. 01.098.
  • 17. Jaschik M., Tańczyk M., Janusz-Cygan A., Wojdyła A., Warmuziński K., 2018. The separation of carbon dioxide from CO2/N2/O2 mixtures using polyimide and polysulphone membranes. Chem. Process Eng., 39, 449–456. DOI: 10.24425/122962.
  • 18. Kaldis S.P., Kapantaidakis G.C., Sakellaropoulos, 2000. Simulation of multicomponent gas separation in a hollow fibre membrane by orthogonal collocation – hydrogen recovery from refinery gas. J. Membr. Sci., 173, 61–71. DOI: 10.1016/S0376-7388(00)00353-7.
  • 19. Karapidakis E.S., Tsave A.A., Soupios P.M., Katsigiannis Y.A., 2010. Energy efficiency and environmental impact of biogas utilization in landfills. Int. J. Environ. Sci. Technol., 7, 599–608. DOI: 10.1007/BF03326169.
  • 20. Karaszova M., Sedlakova Z., Izak P., 2015. Gas permeation processes in biogas upgrading: A short review. Chem. Pap. – Chem. Zvesti, 69, 1277–1283. DOI: 10.1515/chempap-2015-0141.
  • 21. Khan I. U., Hafiz M., Othmanb D., Hashima H., Matsuurad T., Ismailb A.F., Rezaei-Dasht Arzhandib M., Wan Azeleeb I., 2017. Biogas as a renewable energy fuel – A review of biogas upgrading, utilization and storage. Energy Convers. Manage., 150, 277–294. DOI: 10.1016/j.enconman.2017.08.035.
  • 22. Kim K.H., Baik K.J., Kim I.W., Lee H.K., 2012. Optimization of membrane process for methane recovery from biogas. Sep. Sci. Technol., 47, 963–971. DOI: 10.1080/01496395.2011.644878.
  • 23. Kryłowicz A., Chrzanowski K., Usidus J., 2008. The method and generation system of methane, electricity and heat. Polish patent 197595 (in Polish).
  • 24. Lababidi H., Al-Enezi G.A., Ettouney H.M., 1996. Optimization of module configuration in membrane gas separation. J. Membrane Sci., 112, 185–197. DOI: 10.1016/0376-7388(95)00283-9.
  • 25. LiK.,AcharyaD.R.,HughesR.,1990.Mathemticalmodellingofmulticomponentmembranepermeators.J.Membr. Sci., 52, 2, 205–219. DOI: 10.1016/S0376-7388(00)80486-X.
  • 26. Luo T., Zhu N., Shen F., Enshen Long E., Long Y., Chen X., Mei Z., 2016. A case study assessment of the suitability of small-scale biogas plants to the dispersed agricultural structure of China. Waste Biomass Valorization, 7, 1131– 1139. DOI: 10.1007/s12649-016-9487-3.
  • 27. MicaleC.,2015.Bio-methanegenerationfrombiogasupgradingbysemi–permeablemembranes:Anexperimental, numerical and economic analysis. Energy Procedia, 82, 971–977. DOI: 10.1016/j.egypro.2015.11.854.
  • 28. Makaruk A., Harasek M., 2009. Numerical algorithm of modelling multicomponent multipermeator systems. J. Membr. Sci., 344, 258–265. DOI: 10.1016/j.memsci.2009.08.013.
  • 29. Miltner M., Makaruk A., Harasek M., 2017. Review on available biogas upgrading technologies and innovations towards advanced solutions. J. Cleaner Prod., 161, 1329–1337. DOI: 10.1016/j.jclepro.2017.06.045.
  • 30. Nasir I.M., Mohd Ghazi T.I., Omar R., 2012. Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl. Microbiol. Biotechnol., 95, 321–329. DOI: 10.1007/s00253-012-4152-7.
  • 31. NAWARO® Bioenergie AG (2019) The NAWARO® proces. Available at: http://www.nawaro.ag/en/bioenergy -concept/process/index.html.
  • 32. Nunes S.P., Peinemann V.K., 2001. Gas separation with membranes. In: Nunes S.P., Peinemann V.K. (Eds.), Membrane technology: in the chemical industry. Wiley-VCH Verlag GmbH. Weinheim, 39–67. DOI: 10.1002/3527600 388.ch6.
  • 33. Ogawa M., Nakano Y., 2000. Separation of CO2/CH4 mixture through carbonized membrane prepared by gel modification. J. Membrane Sci., 73, 123–132. DOI: 10.1016/S0376-7388(00)00352-5.
  • 34. PanC.Y.1986.Gasseparationbyhigh-flux,asymmetrichollow-fibremembrane.AIChEJ.,32,2020–2027.DOI:10. 1002/aic.690321212.
  • 35. Pettersen T., Lien K.M., 1995. Design studies of membrane permeator processes for gas separation. Gas Sep. Purif., 9, 151–169. DOI: 10.1016/0950-4214(95)98223-8.
  • 36. Polak A., Chmielewski A.G., 2010. Membrane biogas enrichment in methane coupled with advance Polish gas biofuelproductionplant.ProceedingsoftheJuniorScientistConference2010,Vienna,Austria,387–389.Available at: https://publik.tuwien.ac.at/files/PubDat_191011.pdf.
  • 37. Qiu M.M., Hwang S.T., Kao Y.K., 1989. Economic evaluation of gas membrane separator designs. Ind. Eng. Chem. Res., 28, 1670–1677. DOI: 10.1021/ie00095a016.
  • 38. QiR.,HensonM.A.,1998.Optimization-baseddesignofspiral-woundmembranesystemsforCO2/CH4 separations. Sep. Purif. Technol., 13, 209–225. DOI: 10.1016/S1383-5866(98)00044-6.
  • 39. ScholzM.,AldersM.,LohausTh.,WesslingM.,2015.Structuraloptimizationofmembrane-basedbiogasupgrading processes. J. Membr. Sci., 474, 1–10. DOI: 10.1016/j.memsci.2014.08.032.
  • 40. Seman S.Z.A., Idris I., Abdullah A., Shamsudin I.K., Othman M.R., 2019. Optimizing purity and recovery of biogas methane enrichment process in a closed landfill. Renewable Energy, 131, 1117–1127. DOI: 10.1016/j.renene. 2018.08.057.
  • 41. Stürmer B., 2017. Biogas – Part of Austria’s future energy supply or political experiment? Renewable Sustainable Energy Rev., 79, 525–532. DOI: 10.1016/j.rser.2017.05.106.
  • 42. Stern S.A., Wang S.C., 1978. Countercurrent and concurrent gas separation in a permeation stage. Comparison of computation methods. J. Membr. Sci., 4, 141–148. DOI: 10.1016/S0376-7388(00)83290-1.
  • 43. Taveira P., Cruz P., Mendes A., Costa C., Magalhães F., 2001. Considerations on the performance of hollow-fibre modules with glassy polymeric membranes. J. Membr. Sci., 188, 263–277. DOI: 10.1016/S0376-7388(01)00384-2.
  • 44. Thundyil M.J., Koros W.J., 1997. Mathematical modeling of gas separation permeators – for radial crossflow, countercurrent, and concurrent hollow fibre membrane modules. J. Membr. Sci., 125, 2, 275–291. DOI: 10.1016/ S0376-7388(96)00218-9.
  • 45. Tsuru T., Hwang S.-T., 1995. Permeators and continuous membrane columns with retentate cycle. J. Membr. Sci., 98, 57–67. DOI: 10.1016/0376-7388(94)00175-X.
  • 46. Urbaniak A., 2013. Membrane purification and enrichment of biogas. Ph.D. dissertation. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warsaw.
  • 47. Valenti G., Arcidiacono A., Nieto Ruiz J.A., 2016. Assessment of membrane plants for biogas upgrading to biomethane at zero methane emission. Biomass Bioenergy, 85, 35–47. DOI: 10.1016/j.biombioe.2015.11.020.
  • 48. Wang A.J., Li W.W., Yu H.Q., 2011. Advances in biogas technology. In: Bai F.W., Liu C.G., Huang H., Tsao G. (Eds.), Biotechnology in China III: biofuels and bioenergy. Advances in biochemical engineering biotechnology, 128, 119–141. Springer, Berlin, Heidelberg. DOI: 10.1007/10_2011_126.
  • 49. Wang R., Liu S.L., Lin T.T., Chung T.S., 2002. Characterization of hollow fibre membranes in permeator using binary gas mixtures. Chem. Eng. Sci., 57, 967–976. DOI: 10.1016/S0009-2509(01)00435-3.
  • 50. Watanabe H., 1999. CO2 removal from synthetic natural gas for city gas use. J. Membrane Sci., 154, 121–126. DOI: 10.1016/S0376-7388(98)00284-1.
  • 51. Weiss A., Jérôme V., Burghardt D., Likke L., Peiffer S., Hofstetter E.M., Gabler R., Freitag R., 2009. Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant. Appl. Microbiol. Biotechnol., 84, 987–1001. DOI: 10.1007/s00253-009-2093-6.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d2b5291-4a79-475b-90b3-59922020e884
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.