PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rotor dynamics - four open questions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite many years of development in the field of rotor dynamics, many issues still need to be resolved. This is due to the fact that turbomachines, even those with low output power, have a very complex design. The author of this article would like to signal these issues in the form of several questions, to which there are no precise answers. The questions are as follows: How can we build a coherent dynamic model of a turbomachine whose some subsystems have non-linear characteristics? How can we consider the so-called prehistory in our analysis, namely, the relation between future dynamic states and previous ones? Is heuristic modelling the future of rotor dynamics? What phenomena may occur when the stability limit of the system is exceeded? The attempt to find answers to these questions constitutes the subject of this article. There are obviously more similar questions, which encourage researchers from all over the world to further their research.
Rocznik
Strony
art. no. e139791
Opis fizyczny
Bibliorg. 28 poz., il., fot., wykr.
Twórcy
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, Gdańsk 80-231, Poland
Bibliografia
  • [1] T. Szolc, P. Tauzowski, R. Stocki, and J. Knabel, “Damage identification in vibrating rotor-shaft systems by efficient sampling approach,” Mech. Syst. Signal Process., vol. 23, no. 5, pp. 1615–1633, 2009, doi: 10.1016/j.ymssp.2008.12.007.
  • [2] T. Szolc, “On the discrete–continuous modeling of rotor systems for the analysis of coupled lateral torsional vibrations,” Int. J. Rotating Mach., vol. 6, no. 2, pp. 135–149, 2000, doi: 10.1155/S1023621X00000130.
  • [3] J. Zapoměl and P. Ferfecki, “The influence of ferromagnetic fluids on performance of hydrodynamic bearings,” Vibroeng. Procedia, vol. 27, pp. 133–138, 2019, doi: 10.21595/vp.2019.20950.
  • [4] J. Zapoměl and P. Ferfecki, “Study of the load capacity and vibration stability of rotors supported by hydrodynamic bearings lubricated by magnetically sensitive oil,” in Proc. 14th International Conference on Dynamics of Rotating Machines SIRM 2021, 2021, pp. 1–9.
  • [5] M. Klanner and K. Ellermann, “Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements,” Appl. Comput. Mech., vol. 14, no. 1, pp. 31–50, 2020, doi: 10.24132/acm.2020.583.
  • [6] T. Choudhury, R. Viitala, E. Kurvinen, R. Viitala, and J. Sopanen, “Unbalance Estimation for a Large Flexible Rotor Using Force and Displacement Minimization,” Machines, vol. 8, no. 3, 2020, doi: 10.3390/machines8030039.
  • [7] C.S. Prasad and L. Pešek, “Classical flutter study in turbomachinery cascade using boundary element method for incompressible flows,” in Proc. 15th IFToMM World Congress on Mechanism and Machine Science, 2019, pp. 4055–4064, doi: 10.1007/978-3-030-20131-9_404.
  • [8] R.S. Schittenhelm, S. Bevern, B. Riemann, and S. Rinderknecht, “Aktive Schwingungsminderung an einem gyroskopiebehafteten Rotor-system mittels des FxLMS-Algorithmus,” in Proc. SIRM 2013 – 10th Internationale Tagung Schwingungen in rotierenden Maschinen, 2013.
  • [9] C. Xing, M.J. Braun, and H. Li, “A three-dimensional Navier-Stokes-based numerical model for squeeze film dampers. Part 2 — Effects of gaseous cavitation on the behavior of the squeeze film damper,” Tribol. Trans., vol. 52, no. 5, pp. 695–705, 2009, doi: 10.1080/10402000902913311.
  • [10] G. Żywica, Ł. Breńkacz, and P. Bagiński, “Interactions in the rotor-bearings-support structure system of the multi-stage ORC microturbine,” J. Vib. Eng. Technol., vol. 6, pp. 369–377, 2018, doi: 10.1007/s42417-018-0051-2.
  • [11] P. Bagiński, G. Żywica, M. Lubieniecki, and J. Roemer, “The effect of cooling the foil bearing on dynamics of the rotor-bearings system,” J. Vibroeng., vol. 20, no. 2, pp. 843‒857, 2018.
  • [12] T.Z. Kaczmarczyk, G. Żywica, and E. Ihnatowicz, “Vibroacoustic diagnostics of a radial microturbine and a scroll expander operating in the organic Rankine cycle installation,” J. Vibroeng., vol. 18, no. 6, pp. 4130–4147, 2016.
  • [13] A. Nandi and S. Neogy, “Dynamic response of cracked beams and beams with an imperfect support,” in Proc. of VETOMAC-1 Conference, 2000.
  • [14] A. El-Shafei, “Modeling fluid inertia forces of short journal bearings for rotordynamic applications,” J. Vib. Acoust., vol. 117, no. 4, pp. 462–469, 1995, doi: 10.1115/1.2874479.
  • [15] D.S.H. Chan, “Nonlinear analysis of rotordynamic instabilities in high-speed turbomachinery,” J. Eng, Gas Turbines Power, vol. 118, no. 1, pp. 122–129, 1996, doi: 10.1115/1.2816527.
  • [16] T. Uhl, Computer-Aided Identification of Mechanical Construction Models, Warsaw: WNT, 1997 (in Polish).
  • [17] A.P. Sage and J.L. Melsa, System Identification, New York: Academic Press, 1971.
  • [18] J.M. Krodkiewski, J. Ding, and N. Shang, “Identification of unbalance change using a non-linear mathematical model for multi-bearing rotor systems,” J. Sound Vib., vol. 169, no. 5, pp. 685–698, 1994, doi: 10.1006/jsvi.1994.1041.
  • [19] N.S. Feng and E.J. Hahn, “Including foundation effects on the vibration behaviour of rotating machinery,” Mech. Syst. Signal Process., vol. 9, no. 3, pp. 243–256, 1995, doi: 10.1006/mssp.1995.0020.
  • [20] J. Ding and J.M. Krodkiewski, “Inclusion of static indetermination in the mathematical model for non-linear dynamic analyses of multi-bearing rotor system,” J. Sound Vib., vol. 164, no. 2, pp. 267–280, 1993, doi: 10.1006/jsvi.1993.1213.
  • [21] C.S. Chu, K.L. Wood, and I.J. Busch-Vishniac, “A nonlinear dynamic model with confidence bounds for hydrodynamic bearings,” J. Tribol., vol. 120, no. 3, pp. 595–604, 1998, doi: 10.1115/1.2834592.
  • [22] J. Kiciński and G. Żywica, Steam Microturbines in Distributed Cogeneration, Springer, 2015, doi: 10.1007/978-3-319-12018-8.
  • [23] J. Kiciński, Rotor Dynamics, Gdańsk: Wyd. IMP PAN, 2006.
  • [24] J. Kiciński et al., Modelling and Diagnostics of Mechanical, Aerodynamic and Magnetic Interactions in Power Turbosets, Gdańsk, Wyd. IMP PAN, 2005 (in Polish).
  • [25] J. Kiciński, R. Drozdowski, and P. Materny, “The non-linear analysis of the effect of support construction properties on the dynamic properties of multi-support rotor systems,” J. Sound Vib., vol. 206, no. 4, pp. 523–539, 1997, doi: 10.1006/ jsvi.1997.1113.
  • [26] W. Batko, Z. Dąbrowski, and J. Kiciński, Nonlinear Effects in Technical Diagnostics, Radom, Institute for Sustainable Technologies, 2008.
  • [27] J. Kiciński and A. Prońska, “A comparison study of the application of the weight function method for analysing the dynamic state of a three-support laboratory rotor with crack,” Intern. Rep. Inst. of Fluid-Flow Mach. Pol. Ac. Sci., Gdańsk, 2005 (in Polish).
  • [28] J. Kiciński and A. Prońska, “Analysing adequacy intervals and testing the concept of weighting for a large power machine,” Intern. Rep. Instit. Fluid-Flow Mach. Pol. Ac. Sci., Gdańsk, 2005 (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d2afe81-032f-4491-bcd3-9561d52303f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.