PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Review of Tensile Properties of Natural Fibres for Geotechnical Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural fibres have recently gained attention as an alternative sustainable material for civil engineering applications due to natural fibres’ exceptional performance, including high strength, and their environmental-friendliness and cost-effectiveness. However, there are disadvantages to using natural fibres in extreme environments. Therefore, this paper reviewed the effect of moisture content and temperature on the tensile strength of potential natural fibres for engineering purposes. Furthermore, this paper also critically reviewed the influence of alkaline treatment on natural fibres’ tensile strength. This is significant because alkaline treatment enhances surface friction and the fraction of the revealed cellulose on the fibres’ surface, resulting in better mechanical interlocking. In conclusion, natural fibres demonstrate their potential for geotechnical applications due to the materials’ strong tensile properties after being subjected to treatment processes.
Twórcy
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, 84600 Panchor, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, 84600 Panchor, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, 84600 Panchor, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, 84600 Panchor, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, 84600 Panchor, Johor, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  • Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
  • [1] A. Stuart-Street, N.S. Dr, P. Galloway, N.R. Schoknecht, A Simple Guide for Describing Soil, Department of Primary Industries and Regional Development, June 2020.
  • [2] I.Y. Salena, A Case Study of Foundation Failure in the Existing Residential Building, Jurnal Teknik Sipil Fakultas Teknik. 4 (2), 91-103 (2016). DOI: https://doi.org/10.35308/jts-utu.v2i1.340
  • [3] Y. Yuriz, T.N.H. Tuan Ismail, N. N. Mat Hassan, An Overview of Waste Materials for Sustainable Road Construction. Sustain Dev. 11 (1), 215-229 (2020). DOI: https://doi.org/10.30880/ijscet.2020.11.01.021
  • [4] R. Ramkrishnan, M.R. Sruthy, A. Sharma, V. Karthik, Effect of Random Inclusion of Sisal Fibres on Strength Behavior and Slope Stability of Fine Grained Soils, Mater Today-Proc. 5 (11), 25313-25322 (2018). DOI: https://doi.org/10.1016/j.matpr.2018.10.334
  • [5] K.S. Kulhar, M. Raisinghani, Engineering Performance Review of Soil Reinforcement with Natural Fibers, Journal of Civil Engineering and Environmental Technology 5 (1), 20-26 (2018).
  • [6] V.K. Shrivastava, A Review: Sisal Fibre Behavior As Reinforcement in Composites, Journal of Basic and Applied Engineering Research. 4 (2), 172-175 (2017).
  • [7] R. Dungani, M. Karina, Subyakto, A. Sulaeman, D. Hermawan, A. Hadiyane, Agricultural Waste Fibers Towards Sustainability and Advanced Utilization: A Review, Plant Sci. 15 (1-2), 42-55. DOI: https://doi.org/10.3923/ajps.2016.42.55
  • [8] N. Ramli, N. Mazlan, Y. Ando, Z. Leman, K. Abdan, A.A. Aziz, N.A. Sairy, Natural Fiber for Green Technology in Automotive Industry: A Brief Review, IOP Conference Series: Materials Science and Engineering 368 (1), 012012 (2018). DOI: https://doi.org/10.1088/1757-899x/368/1/012012
  • [9] F.X. Espinach, Advances in Natural Fibers and Polymers, Materials 14 (10), 2607 (2021). DOI: https://doi.org/10.3390/ma14102607
  • [10] T. Khan, M.T. Hameed Sultan, A.H. Ariffin, The Challenges of Natural Fiber in Manufacturing, Material Selection, and Technology Application: A Review, Reinforced Plastics and Composites 37 (11), 770-779 (2018). DOI: https://doi.org/10.1177/0731684418756762
  • [11] A. Gholampour, T.A. Ozbakkaloglu, Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. Mater Sci. 55, 829-892 (2020). DOI: https://doi.org/10.1007/s10853-019-03990-y
  • [12] A. Darwis, A.H. Iswanto, Morphological Characteristics of Bambusa Vulgaris and The Distribution and Shape of Vascular Bundles Therein, Korean Wood Sci. Technol. 46 (4), 315-322 (2018). DOI: https://doi.org/10.5658/WOOD.2018.46.4.315
  • [13] A. Rochim, K. Latifah, B. Supriyadi, Characterization of Compression and Tensile Properties of Bamboo Jawa (Gigantochloa Atter) and Bamboo Apus (Gigantochloa Apus) for Application as Soil Reinforcement, IOP Conference Series: Earth and Environmental Science 498 (1), 012040 (2020). DOI: https://doi.org/10.1088/1755-1315/498/1/012040
  • [14] C. Tezara, J.P. Siregar, H.Y. Lim, F.A. Fauzi, M.H. Yazdi, I.K. Moey, J.W. Lim, Factors That Affect The Mechanical Properties of Kenaf Fiber Reinforced Polymer: A Review, Mech. Eng. Sci. 10 (2), 2159-2175 (2016). DOI: https://doi.org/10.15282/jmes.10.2.2016.19.0203
  • [15] S. Sathees Kumar, R. Muthalagu, C.H. Nithin Chakravarthy, Effects of Fiber Loading on Mechanical Characterization of Pineapple Leaf and Sisal Fibers Reinforced Polyester Composites for Various Applications, Mater. Today-Proc. 44 (1), 546-553 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.10.214
  • [16] F. Jahan, M. Soni, Effects of Chemical Treatment on Mechanical Properties of Various Natural Fiber Reinforced Composite: A Review, Mater. Today-Proc. 46 (15), 6708-6711 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.04.175
  • [17] D.S. Vijayan, D. Parthiban, Effect of Solid Waste Based Stabilizing Material for Strengthening of Expansive Soil - A Review, Environmental Technology and Innovation 20, 101108 (2020). DOI: https://doi.org/10.1016/j.eti.2020.101108
  • [18] C. Mizera, D. Herak, P. Hrabe, A. Kabutey, Effect of Temperature and Moisture Content on Tensile Behaviour of False Banana Fibre (Ensete Ventricosum), Int. Agrophys. 31 (3), 377-382 (2017). DOI: https://doi.org/10.1515/intag-2016-0067
  • [19] N. Razali, M.S. Salit, M. Jawaid, M.R. Ishak, Y. Lazim, A Study On Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity, Bioresources 10, 1803-1823 (2015).
  • [20] H. Chen, J. Wu, J. Shi, W. Zhang, H. Wang, Effect of Alkali Treatment on Microstructure and Thermal Stability of Parenchyma Cell Compared with Bamboo Fiber, Ind. Crop. Prod. 164, 113380 (2021). DOI: https://doi.org/10.1016/j.indcrop.2021.113380
  • [21] A.A. Salih, R. Zulkifli, C.H. Azhari, Tensile Properties and Microstructure of Alkali Treatment, Fibers 8 (5), 26 (2020). DOI: https://doi.org/10.3390/fib8050026
  • [22] J.A. Lolo, S. Nikmatin, H. Alatas, D.D. Prastyo, A. Syafiuddin, Fabrication of Biocomposites Reinforced with Natural Fibers and Evaluation of Their Physio-Chemical Properties, Biointerface Research in Applied Chemistry 10 (4), 5803-5808 (2020). DOI: https://doi.org/10.33263/BRLAC104.803808
  • [23] J. Naveen, M. Jawaid, P. Amuthakkannan, M. Chandrasekar, Mechanical and Physical Properties of Sisal and Hybrid Sisal Fiber-Reinforced Polymer Composites, Woodhead Publishing Series in Composites Science and Engineering 426-440 (2019). DOI: https://doi.org/10.1016/B978-0-08-102292-4.00021-7
  • [24] D.B. Guido, F. Vincenzo, V. Antonino, Natural Fibre Reinforced Composites, Mater. Sci. Tech. Ser. 57-90 (2012).
  • [25] K. Senthilkumar, I. Siva, N. Rajini, J.T.W. Jappes, S. Siengchin, Mechanical Characteristics of Tri-Layer Eco-Friendly Polymer Composites for Interior Parts of Aerospace Application, Woodhead Publishing Series in Composites Science and Engineering 35-53 (2018). DOI: https://doi.org/10.1016/B978-0-08-102131-6.00003-7
  • [26] Sagar Chokshi, Vijay Parmar, Piyush Gohil, Vijaykumar Chaudhary, Chemical Composition and Mechanical Properties of Natural Fibers, Natural Fibers 19 (10), 3942-3953 (2020). DOI: https://doi.org/10.1080/15440478.2020.1848738
  • [27] A.L. Mohamed, A.G. Hassabo, Flame Retardant of Cellulosic Materials and Their Composites, Flame Retardants 247-314 (2015). DOI: https://doi.org/10.1007/978-3-319-03467-6_10
  • [28] S. Zhang, B. Fei, Y. Yu, H. Cheng, C. Wang, Effect of the Amount of Lignin on Tensile Properties of Single Wood Fibers, Forest Science and Practice 15, 56-60 (2013). DOI: https://doi.org/10.1007/s11632-013-0106-0
  • [29] M. Liu, A.S. Meyer, D. Fernando, D.A.S. Silva, G. Daniel, A. Thygesen, Effect of Pectin and Hemicellulose Removal from Hemp Fibres on the Mechanical Properties of Unidirectional Hemp/Epoxy Composites, Compos. Part A - Appl. s. 90, 724-735 (2016). DOI: https://doi.org/10.1016/j.compositesa.2016.08.037
  • [30] Z. Yang, H. Peng, W. Wang, T. Liu, Crystallization Behavior of Poly(Ε-Caprolactone)/Layered Double Hydroxide Nanocomposites, Applied Polymer Science 116 (5), 2658-2667 (2010). DOI: https://doi.org/10.1002/app.31787
  • [31] J. Chen, K. Wang, F. Xu, R. Sun, Effect of Hemicellulose Removal on the Structural and Mechanical Properties of Regenerated Fibers From Bamboo’, Cellulose 22 (1), 63-72 (2015). DOI: https://doi.org/10.1007/s10570-014-0488-8
  • [32] A. Khosro, M.R.S. Shadbad, A. Nokhodchi, A. Javadzedeh, M. Barzegar-Jalali, J. Barar, G. Mohammadi, Y. Omidi, Piroxicam Nanoparticles for Ocular Delivery: Physicochemical Characterization and Implementation in Endotoxin-Induced Uveitis, Drug Targeting 15 (6), 407-416 (2008). DOI: https://doi.org/10.1080/10611860701453125
  • [33] G.L. Sivakumar Babu, A.K. Vasudevan, Strength and Stiffness Response of Coir Fiber-Reinforced Tropical Soil, Materials in Civil Engineering 20 (9), 571-577 (2008). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(571)
  • [34] I. Chang, J. Im, G.-C. Cho, Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering, Sustainability-Basel. 8 (3), 251 (2016). DOI: https://doi.org/10.3390/su8030251
  • [35] T. Zhang, S. Liu, G. Cai, A.J. Puppala, Experimental Investigation of Thermal and Mechanical Properties of Lignin Treated Silt, Eng Geol. 196, 1-11 (2015). DOI: https://doi.org/10.1016/j.enggeo.2015.07.003
  • [36] H. Wang, G. Tian, W. Li, D. Ren, X. Zhang, Y. Yu, Sensitivity of Bamboo Fiber Longitudinal Tensile Properties to Moisture Content Variation under The Fiber Saturation Point, Wood Sci. 61 (3), 262-269 (2015). DOI: https://doi.org/10.1007/s10086-015-1466-y
  • [37] E. Muñoz, J.A. García-Manrique, Water Absorption Behaviour and Its Effect on The Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites, Polymer Science (2015). DOI: http://dx.doi.org/10.1155/2015/390275
  • [38] A.D. Gudayu, L. Steuernagel, D. Meiners, R. Gideon, Effect of Surface Treatment on Moisture Absorption, Thermal, and Mechanical Properties of Sisal Fiber, Industrial Textiles 51 (2), 2853s-2873s. DOI: https://doi.org/10.1177/1528083720924774
  • [39] D. Awalluddin, M.A. Mohd Ariffin, M.H. Osman, M.W. Hussin, M.A. Ismail, H. Lee, N.H. Abdul Shukor Lim, Mechanical Properties of Different Bamboo Species. International Conference of Euro Asia Civil Engineering Forum 138, 01024 (2017). DOI: https://doi.org/10.1051/matecconf/201713801024
  • [40] M.C. Symington, W.M. Banks, O.D. West, R.A. Pethrick, Tensile Testing of Cellulose Based Natural Fibers for Structural Composite Applications, Composite Materials 43 (9), 1083-1108 (2009). DOI: https://doi.org/10.1177/0021998308097740
  • [41] l. Prabhu, V. Krishnaraj, S. Sathish, S. Gokulkumar, N. Karthi, L. Rajeshkumar, D. Balaji, N. Vigneshkumar, K.S. Elango, A Review on Natural Fiber Reinforced Hybrid Composites: Chemical Treatments, Manufacturing Methods and Potential Applications, Mater. Today-Proc. 45 (9), 8080-8085 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.01.280
  • [42] X. Yang, K. Wang, G.T., X. Liu, S. Yang, Evaluation of Chemical Treatments to Tensile Properties of Cellulosic Bamboo Fibers, Wood Wood Prod. 76 (4), 1303-1310 (2018). DOI: https://doi.org/10.1007/s00107-018-1303-2
  • [43] Mukesh, S.S. Godara, Effect of Chemical Modification of Fiber Surface on Natural Fiber Composites: A Review’, Mater. Today-Proc. 18 (7) 3428-3434 (2019). DOI: https://doi.org/10.1016/j.matpr.2019.07.270
  • [44] M.H. Zin, K. Abdan, N. Mazlan, E.S. Zainudin, K.E. Liew, The Effects of Alkali Treatment on The Mechanical and Chemical Properties of Pineapple Leaf Fibres (PALF) and ADHESION TO EPOXY RESIN’, IOP Conference Series: Materials Science and Engineering 368 (1), 012035. DOI: https://doi.org/10.1088/1757-899X/368/1/012035
  • [45] Y. Shireesha, G. Nandipati, State of Art Review on Natural Fibers, Mater. Today-Proc. 18 (1), 15-24 (2019). DOI: https://doi.org/10.1016/j.matpr.2019.06.272
  • [46] F.S. Tong, S.C. Chin, M.T. Mustafa, H.R. Ong, M.M.R. Khan, J. Gimbun, S.I. Doh, Influence of Alkali Treatment on Physico-Chemical Properties of Malaysian Bamboo Fiber: A Preliminary Study, Anal. Sci. 22 (1), 143-150 (2018). DOI: https://doi.org/10.17576/mjas-2018-2201-18
  • [47] P.S. Kumar, S. Prakash, J. Prakash, The Effect of Chemical Treatment on The Tensile Properties of Sisal Fibre Reinforced Epoxy Composite’, Engineering and Technology 5 (8), 1431-1435 (2018). DOI: https://www.irjet.net/archives/V5/i8/IRJET-V5I8245.pdf
  • [48] R. Ahmad, R. Hamid, S.A. Osman, Effect of Fibre Treatment on the Physical and Mechanical Properties of Kenaf Fibre Reinforced Blended Cementitious Composites, Civil Engineering 23 (9), 4022-4035 (2019). DOI: https://doi.org/10.1007/s12205-019-1535-7
  • [49] B. Koohestani, A.K. Darban, P. Mokhtari, E. Yilmaz, E. Darezereshki, Comparison of Different Natural Fiber Treatments: A Literature Review, Environmental Science and Technology 16 (1), 629-642 (2019). DOI: https://doi.org/10.1007/s13762-018-1890-9
  • [50] U.S. Gupta, M. Dhamarikar, A. Dharkar, S. Chaturvedi, S. Tiwari, R. Namdeo, Surface Modification of Banana Fiber: A Review, Mater Today-Proc. 43 (2), 904-915 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.07.217
Uwagi
1. This research was supported by Universiti Tun Hussein Onn Malaysia (UTHM) through Tier 1 (vot H801).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d2a9d01-e0c7-458b-b7ec-d2962e7264ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.