PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo dosimetry for BEBIG Cobalt-60 brachytherapy source with gynecological applicator in the presence of inhomogeneities

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: High-dose-rate (HDR) 60Co brachytherapy necessitates accurate dose calculations to minimize normal tissue toxicity and late malignancy risks. Conventionally, the American Association of Physicists in Medicine (AAPM) Task Group 43 (TG-43) formalism, utilizing table-based dose superposition, has been employed for dose calculations, overlooking tissue inhomogeneity effects. Material and methods: This study focuses on characterizing the high-dose-rate BEBIG 60Co brachytherapy source, in combination with a gynecological applicator, using Monte Carlo simulations. The investigation is based on the model of the modified BEBIG 60Co source (Co0.A86) implemented at the University of Malaya Medical Center. Dosimetric properties are evaluated according to AAPM TG-43 formalism, with validation against existing published data. Results: Our investigation presents comprehensive MC dosimetric properties of the high-dose-rate BEBIG 60Co brachytherapy source, highlighting its accuracy in dose calculations compared to established data. The study also examined the impact of the applicator on depth dose calculations within a Krieger phantom and explored the influence of various tissue inhomogeneities on the depth dose. Conclusions: Our findings revealed that the applicator had a relatively minimal effect on the delivered dose, with only marginal differences observed. Furthermore, we investigated the depth doses along the central axis of the applicator, within a segment characterized by various tissue inhomogeneities where dose differences of up to 12% were observed, with the lowest and highest doses recorded within bone and adipose tissues, respectively. This study underscores the valuable role of MC simulations in estimating doses at locations where physical measurements are unfeasible, such as the intra-uterine tube surface, as well as in scenarios featuring tissue inhomogeneities.
Słowa kluczowe
Rocznik
Strony
145--151
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100, Cyberjaya, Malaysia
  • Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
  • Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
autor
  • Clinical Oncology Unit, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, 46150 PJ, Malaysia
  • Department of Physics, University of Surrey, Guildford, UK
  • Department of Physics, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
  • Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100, Cyberjaya, Malaysia
Bibliografia
  • 1. Jones D. ICRU Report 50—Prescribing, Recording and Reporting Photon Beam Therapy. Medical Physics. 1994;21(6):833-834. https://doi.org/10.1118/1.597396
  • 2. Nag S, Erickson B, Thomadsen B, et al. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2000;48(1):201-211. https://doi.org/10.1016/S0360-3016(00)00497-1
  • 3 Richter J, Baier K, Flentje M. Comparison of 60 Cobalt and 192 Iridium sources in high dose rate afterloading brachytherapy. Strahlenther Onkol. 2008;184(4):187-192. https://doi.org/10.1007/s00066-008-1684-y
  • 4. Campos LT, de Almeida CEV. Monte Carlo dosimetry of the 60Co BEBIG high dose rate for brachytherapy. PLoS One. 2015;10(9). https://doi.org/10.1371/journal.pone.0139032
  • 5. Grigsby PW, Georgiou A, Jeffrey FW, Perez CA. Anatomic variation of gynecologic brachytherapy prescription points. Int J Radiat Oncol Biol Phys. 1993;27(3):725-729. https://doi.org/10.1016/0360-3016(93)90402-H
  • 6. Elhanafy OA, Das RK, Paliwal BR, Migahed MD, Sakr HA, Elleithy M. Anatomic variation of prescription points and treatment volume with fractionated high-dose rate gynecological brachytherapy. J Appl Clin Med Phys. 2002;3(1):1-5. https://doi.org/10.1120/jacmp.v3i1.2586
  • 7. Co JL, Bojador MR, Mejia MBA, Ortin TTS, Ganzon DE. Interfraction variation and dosimetric changes in patients with cervical cancer treated with intracavitary brachytherapy. J Glob Oncol. 2017;4:1-7. https://doi.org/10.1200/JGO.2016.008557
  • 8. Chernavsky NE, Morcos M, Wu P, Viswanathan AN, Siewerdsen JH. Technical assessment of a mobile CT scanner for image-guided brachytherapy. J Appl Clin Med Phys. 2019;20(10):187-200. https://doi.org/10.1002/acm2.12738
  • 9. Moradi F, Ung NM, Khandaker MU, et al. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators. Phys Med Biol. 2017;62(16):6550. https://doi.org/10.1088/1361-6560/aa7fe6
  • 10 Setilo I, Oderinde OM, du Plessis FC. The effect of SSD, Field size, Energy and Detector type for Relative Output Factor measurement in small photon beams as compared with Monte Carlo simulation. Polish J Med Phys Eng. 2019;25(2):101-110. https://doi.org/10.2478/pjmpe-2019-0014
  • 11. Fardi Z, Taherparvar P. A Monte Carlo investigation of the dose distribution for new I-125 low dose rate brachytherapy source in water and in different media. Polish J Med Phys Eng. 2019;25(1):15-22. https://doi.org/10.2478/pjmpe-2019-0003
  • 12. Moradi F, Khandaker MU, Alrefae T, Ramazanian H, Bradley DA. Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms. Appl Radiat Isot. 2019;146:120-126. https://doi.org/10.1016/j.apradiso.2019.01.031
  • 13. Granero D, Perez-Calatayud J, Ballester F. Dosimetric study of a new Co-60 source used in brachytherapy. Med Phys. 2007;34(9):3485-3488. https://doi.org/10.1118/1.2759602
  • 14. Badry H, Oufni L, Ouabi H, Hirayama H. Monte Carlo dose calculation for HDR brachytherapy source using EGS5 code. Radiat Phys Chem. 2018;150:76-81. https://doi.org/10.1016/j.radphyschem.2018.04.025
  • 15. Rivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3):633-674. https://doi.org/10.1118/1.1646040
  • 16. Selvam TP, Bhola S. EGSnrc-based dosimetric study of the BEBIG HDR brachytherapy sources. Med Phys. 2010;37(3):1365-1370. https://doi.org/10.1118/1.3326948
  • 17. White DR, Booz J, Griffith RV, Spokas JJ, Wilson IJ. ICRU Report 44: tissue substitutes in radiation dosimetry and measurement. J Int Comm Rad Units Meas. 1989;23. https://doi.org/10.1093/jicru/os23.1.Report44
  • 18. Jamalludin Z, Jong WL, Malik RA, Rosenfeld A, Ung NM. Characterization of MOSkin detector for in vivo dose verification during Cobalt-60 high dose-rate intracavitary brachytherapy. Phys Med. 2019;58:1-7. https://doi.org/10.1016/j.ejmp.2019.01.010
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d291c26-bf9d-4b9a-9026-b1a420a45ddd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.