PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role and position of iron in 0.8CaZrO3-0.2CaFe2O4

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2014 (10th ; 15-18.06.2014 ; Wrocław, Poland)
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to characterize the 0.8CaZrO3-0.2CaFe2O4 composite structure with particular emphasis on the role and position of iron in the function of sintering temperature. The paper presents the results of 57Fe Mössbauer effect at room temperature. It was found that the increase of sintering temperature causes an increase in the amount of incorporated iron ions in the CaZrO3-crystal structure. Based on Mössbauer spectroscopy analysis, it was found that three different environments of Fe3+ ions were observed in the obtained materials. Two of them corresponded to CaFe2O4 phase and one was associated with the substitution of Zr4+ by Fe3+ in the CaZrO3 structure.
Czasopismo
Rocznik
Strony
147--150
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
autor
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
autor
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
autor
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
  • Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
Bibliografia
  • 1. Dravid, V. P., Sung, C. M., Notis, M. R., & Lyman, C. E. (1989). Crystal symmetry and coherent twin structure of calcium zirconate. Acta Crystallogr.Sect. B-Struct. Sci., 45(3), 218–227. DOI: 10.1107/S0108768189000856.
  • 2. Rossa, N. L., & Chaplin, T. D. (2003). Compressibilityof CaZrO3 perovskite: Comparison with Ca-oxide perovskites. J. Solid State Chem., 172(1), 123–126.DOI: 10.1016/S0022-4596(02)00166-4.
  • 3. Stoch, P., Szczerba, J., Lis, J., Madej, D., & Pędzich,Z. (2012). Crystal structure and ab initio calculations of CaZrO3. J. Eur. Ceram. Soc., 32(3), 665–670. DOI:10.1016/j.jeurceramsoc.2011.10.011.
  • 4. Prasanth, C. S., Padma Kumar, H., Pazhani, R., Solomon, S., & Thomas, J. K. (2008). Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics. J. Alloy. Compd., 464(1/2),306–309. DOI: 10.1016/j.jallcom.2007.09.098. Fig. 2. 57Fe Mössbauer effect measurements at room temperature of the sample sintered at 1400°C and 1700°C.
  • 5. Pollet, M., Marinel, S., & Desgardin, G. (2004). CaZrO3, a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications. J. Eur. Ceram. Soc., 24(1), 119–127. DOI: 10.1016/S0955-2219(03)00122-5.
  • 6. Levin, I., Amos, T. B., Bell, S. M., Farber, L., Vanderah,T. A., Roth, R. S., & Toby, B. H. (2003). Phase equlibra,crystal structures, and dielectric anomaly in theBaZrO3-CaZrO3 system. J. Solid State Chem., 175,170–181. DOI: 10.1016/S0022-4596(03)00220-2.
  • 7. Serena, S., Sainz, M. A., & Caballero, A. (2009). The system Clinker-MgO-CaZrO3 and its application to the corrosion behavior of CaZrO3/MgO refractory matrix by clinker. J. Eur. Ceram. Soc., 29(11), 2199–2209.DOI: 10.1016/j.jeurceramsoc.2009.01.015.
  • 8. Dudek, M., & Bućko, M. M. (2003). Electrical properties of stoichiometric and non-stoichiometric calcium zirconate. Solid State Ion., 157, 183–187.
  • 9. Dudek, M., & Drożdż-Cieśla, E. (2009). Some observations on synthesis and electrolytic properties of nonstoichiometric calcium zirconate. J. Alloy. Compd.,457, 846–854. DOI: 10.1016/j.jallcom.2008.08.020.
  • 10. Hwang, S. C., & Choi, G. M. (2006). The effect of cation nonstoichiometry on the electrical conductivity of acceptor-doped CaZrO3. Solid State Ion., 177, 3099–3103. DOI: 10.1016/j.ssi.2006.08.002.
  • 11. Smith, K. L., Colella, M., Cooper, R., & Vance, E. R. (2003). Measured displacement energies of oxygen ions in titanates and zirconates. J. Nucl. Mater., 321(1), 19–28. DOI: 10.1016/S0022-3115(03)00197-1.
  • 12. Muller-Buschbaum, H. K. (2003). The crystal chemistry of AM2O4 oxometallates. J. Alloy. Compd., 349(1/2), 49–104.
  • 13. Muller, O., & Roy, R. (1974). The major ternary structural families. New York: Springer.
  • 14. Rietveld, H. M. (1969). A profi le refi nement method for nuclear and magnetic structures. J. Appl. Cryst.,2, 65–71. DOI: 10.1107/S0021889869006558.
  • 15. Rodriguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder. Diffr. Phys. B, 192(1/2), 55–69. DOI: 10.1016/0921-4526(93)90108-I.
  • 16. Shannon, R. D. (1976). Revise effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751–767. DOI: 10.1107/S0567739476001551.
  • 17. Tsipis, E. V., Pivak, Y. V., Waerenborgh, J. C., Kolotygin, V. A., Viskup, A. P., & Khortan, V. V. (2007). Oxygen ionic conductivity, Mössbauer spectra and thermal expansion of CaFe2O4-. Solid State Ion., 178(25/26),1428–1436. DOI: 10.1016/j.ssi.2007.09.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d26c444-111b-4734-a9d3-d6be360536c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.