Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
17-4PH stainless steel finds application in the aerospace industry owing to its good mechanical properties and corrosion resistance. In the literature, this steel is described as good for welding, but research shows that it may be problematic due to the formation of defects. In this study, the welded joints were made by the robotic TIG welding method with various welding speeds (2 and 3 mm/s). The joints were subjected to non-destructive testing and were free from defects. The microstructure was observed by light microscopy and scanning electron microscopy. Changes in the microstructure of the heat affected zone were observed and discussed. Based on the observation of the microstructure and the change in the hardness profile, the heat affected zone was divided into 4 characteristic regions. δ-ferrite and NbC were observed in the martensite matrix. The welded joints were subjected to heat treatment consisting of solution and aging in 550°C for 4 h. The microstructure of the heat affected zone become homogenized as a result of the heat treatment. The content of stable austenite in the welded joint after the heat treatment was about 3%.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
339--344
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab.
Twórcy
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
- Pratt & Whitney Rzeszów, Rzeszów, Poland
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Bibliografia
- [1] ASM Handbook, Volume 4D, Heat Treating of Irons and Steels, 2014 ASM International.
- [2] A.K. Bhaduri, S. Sujith, G. Srinivasan, T P.S Gill, S.L. Mannan, Welding Journal 74 (5), 153-159 (1995).
- [3] S.S.M. Tavares, Jurnal of Material Enginering and Performance 26 (6), 2512-2518 (2017).
- [4] M.B. Balajaddeh, H. Naffakh-Moosavy, Optics & Laser Technology 119, 1-12 (2019).
- [5] C. Chen-Yuan, T. Yu-Chih, Materials Letters 237, 228-231 (2019).
- [6] A. Ziewiec, A. Zielińska-Lipiec, E. Tasak, Archives of Metallurgy and Materials 59 (3), 965-970 (2014).
- [7] C.N. Hsiao, C.S. Chiou, J.R. Yang, Materials Chemistry and Physics 74, 134-142 (2002).
- [8] S.S.M. Tavares, F.J. da Silva, C. Scandian, G.F. da Silva, H.F.G. de Abreu, Corrosion Science 52 (11), 3835-3839 (2010)
- [9] T. Trzepieciński, T. Pieja, T. Malinowski, R. Smuszc, M. Motyka, Journal of Materials Processing Tech. 252, 192-200 (2018)
- [10] J. Burja, B. Šuler, A. Nagode, Materialwissenschaft und Werkstofftechnik 50, 405-411(2019)
- [11] C.R. Das, H.C. Dey, G. Srinivasan, S.K. Albert, A.K. Bhaduri, A. Dasgupta, Science and Technology of Welding and Joining 11 (5), 502-508 (2006).
- [12] W. Liu, J. Ma, M.M. Atabaki, R. Pillai, B. Kumar, U. Vasudevan, H. Sreshta, R. Kovacevic, Hybrid laser-arc Welding of 17-4PH Martensitic Stainless Steel. Lasers in Manufacturing and Materials Processing 2, 74-90 (2015).
- [13] ASM Handbook, Volume 6,Welding, Brazeing and Soldering 1993 ASM International
- [14] K. Bhaduri, T.P.S. Gill, G. Srinivasan, S. Sujith, Science and Technology of Welding and Joining 4 (5), 295-301 (1999).
- [15] A. Ziewiec, J. Czech, E. Tasak, Archives of Metallurgy and Materials 57 (4), 1055-1060 (2012).
- [16] P. Mayjara, M. Jahazi, Canadian Metallurgical Quarterly 47 (4), 413-435 (2008).
- [17] J. Ma, M.A. Mehdi, L. Wei R. Pillai, B. Kumar, U. Vasudevan, R. Kovacevic, Optics & laser Technology 82, 38-52 (2016).
- [18] R. Bhambroo, S. Roychowdhury, K. Vivekanand, V.S. Raja, Materials Science & Engineering A 568, 127-133 (2013).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d22befc-ec83-4e92-919e-2beadbf40ecc