Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In 2014, a significant upgrade was made to the Borowiec (BORL 7811) laserranging system, which is the part of Space Research Centre of the Polish Academy of Sciences (SRC PAS). Two high-energy lasers modules were installed. First is the EKSPLA PL-2250, used for tracking objects equipped with retroreflectors. Second is the Continuum Surelite III, dedicated to the tracking of space debris without retroreflectors. In 2016, the BORL station joined the space debris tracking laser group and, since then, is tracking systematically inactive/defunct satellites and typical rocket bodies from LEO regime. Today, the BORL is tracking regularly about 80 different space debris objects. The paper presents the activity of the BORL laser station in observations of space debris. The results presented are from years 2016 to 2020. The sum of all passes from this period is almost 2 000, giving over 23 000 normal points. Average root mean square error (RMS) of objects with satellite laser ranging-dedicated (SLR-dedicated) retroreflectors ranges 1.5 cm-14 cm and of objects without SLR-dedicated retroreflectors ranges 8 cm-222 cm.
Słowa kluczowe
Rocznik
Tom
Strony
119--134
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Space Research Centre, Polish Academy of Science, Astrogeodynamic Observatory, Borowiec, Poland
autor
- Space Research Centre, Polish Academy of Science, Astrogeodynamic Observatory, Borowiec, Poland
autor
- Space Research Centre, Polish Academy of Science, Astrogeodynamic Observatory, Borowiec, Poland
autor
- Space Research Centre, Polish Academy of Science, Astrogeodynamic Observatory, Borowiec, Poland
autor
- Space Research Centre, Polish Academy of Science, Astrogeodynamic Observatory, Borowiec, Poland
autor
- Space Research Centre, Polish Academy of Science, Astrogeodynamic Observatory, Borowiec, Poland
autor
- Space Research Centre, Polish Academy of Science, Astrogeodynamic Observatory, Borowiec, Poland
Bibliografia
- Degnan J.J. (1993). Millimeter Accuracy Satellite Laser Ranging: A Review, Contributions of Space Geodesy to Geodynamics: Technology, Geodynamics Series Vol. 25, 133-162.
- Greene B., Gao Y., Moore C., Wang Y., Boiko A., Ritchie J., Sang J., Cotter J. (2002). Laser tracking of space debris, Proceedings of 13th International Workshop on Laser Ranging, Washington D.C., Oct. 7-11, 2002.
- Jagoda M., Rutkowska M. (2016). Estimation of the Love numbers: k2, k3 using SLR data of the LAGEOS1, LAGEOS2, STELLA and STARLETTE satellites, Acta Geodaetica et Geophysica, Vol. 51, No. 3, 493-504.
- Jagoda M., Rutkowska M., Kraszewska K. (2016). The evaluation of time variability of tidal parameters h and l using SLR technique, Acta Geodynamica et Geomaterialia, Vol. 14, No. 2, 153-158.
- Kan S. (2007). China’s Anti-Satellite Weapon Test, Congressional Research Service Report for Congress, April 23, 2007.
- Kessler D.J., Cour-Palais B.G. (1978). Collision frequency of artificial satellites: the creation of a debris belt, Journal of Geophysical Research, 38 (A6), 2646-2647.
- Kirchner G., Koidl F. (2015). Laser Ranging to Space Debris from Graz Laser Station, Vermessung & Geoinformation, 2+3/2015, 151-155.
- Kucharski D., Kirchner G., Bennett J.C., Lachut M., Sośnica K., Koshkin N., Shakun L., Koidl F., Steindorfer M., Wang P., Fan C., Han X., Grunwaldt L., Wilkinson M., Rodriguez J., Bianco G., Vespe F., Catalán M., Salmins K., del Pino J.R., Lim H.C., Park E., Moore C., Lejba P., Suchodolski T. (2017). Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging, Earth and Space Science, Vol. 4, Issue 10, 661-668.
- Kucharski D., Kirchner G., Otsubo T., Flegel S.K., Kunimori H., Jah M.K., Koidl F., Bennett J.C., Steindorfer M., Wang P. (2020). Quanta Photogrammetry of Experimental Geodetic Satellite for remote detection of micrometeoroid and orbital debris impacts, Acta Astronautica, Vol. 174, 34-31.
- Lejba P., Schillak S. (2011). Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites, Advances in Space Research, Vol. 47, Issue 4, 654-662.
- Lejba P., Suchodolski T., Schillak S., Bartoszak J., Michałek P., Zapaśnik S. (2016). New face of the Borowiec Satellite Laser Ranging Station, Proceedings of the 20th International Workshop on Laser Ranging, Potsdam, Oct. 9-14.2016.
- Lejba P., Suchodolski T., Michałek P., Bartoszak J., Schillak S., Zapaśnik S. (2018). First laser measurements to space debris in Poland, Advances in Space Research, Vol. 61, Issue 10, 2609-2616, DOI: https://doi.org/10.1016/j.asr.2018.02.033.
- Lejba P., Suchodolski T., Michałek P. (2020). Laser Ranging to Space Debris in Poland: Tracking and Orbit Determination, The Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS).
- Milowicki G.V., Johnson-Freese J. (2008). Strategic Choices: Examining the United States Military Response to the Chinese Anti-Satellite Test, Astropolitics The International Journal of Space Politics and Policy, Vol. 6, No. 1, 1-21, DOI: https://doi.org/10.1080/14777620801907913.
- Pearlman M.R., Noll C.E., Pavlis E.C., Lemoine F.G., Combrink L., Degnan J.J., Kirchner G., Schreiber U. (2019). The ILRS: approaching 20 years and planning for future, Journal of Geodesy, Vol. 93, 2161-2180, DOI: https://doi.org/10.1007/s00190-019-01241-1.
- Schillak S. (2004). Analysis of the process of the determination of the station coordinaties by the satellite laser ranging based on results of the Borowiec SLR station in 1993.5-2000.5, Artificial Satellites, Vol. 39, No. 3, 217-287.
- Schillak S., Lejba P., Michałek P. (2021). Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite, Sensors, Vol. 21, Issue 3, 737.
- Sośnica K., Thaller D., Jäggi A., Dach R., Beutler G. (2012). Sensitivity of LAGEOS orgits to global gravity field model, Artificial Satellites, Vol. 47, No. 2, 47-65.
- Sośnica K., Jäggi A., Thaller D., Beutler G., Dach R. (2014). Contribution of Starlette, Stella, and Ajisai to the SLR-derived global reference frame, Journal of Geodesy, Vol. 88, No. 8, 789-804.
- Sośnica K. (2015). LAGEOS Sensitivity to Ocean Tides, Acta Geophysica, Vol. 63, No. 4, 1181-1203.
- Steindorfer M.A., Kirchner G., Koidl F., Wang P., Kucharski D. (2019). Recent space debris related activities at the SLR station Graz, 1 st NEO and Debris Detection Conference.
- Steindorfer M.A., Kirchner G., Koidl F., Wang P., Jilate B., Flohrer T. (2020). Daylight space debris laser ranging, Nature Communications, Vol. 11(1), 3735, DOI: https://doi.org/10.1038/s41467-020-17332-z.
- Tagawa M., Hanada T., Hashimoto K., Kitazawa Y., Kawabe A. (2010). Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques, Proceeding of the Advanced Maui Optical Space Surveillance Technologies Conference.
- Wu Z., Zhang H., Deng H., Long M., Cheng Z., Zhang Z., Meng W. (2019). The progress of laser ranging technology at Shanghai Astronomical Observatory, Geodesy and Geodynamics, 10, Issue 6, 492-498.
- ESA, May 20, 2021, https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers.
- EUSST, February 26, 2021, https://www.eusst.eu/about-us/.
- ILRS Current Missions, November 24, 2021, https://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/index.html.
- ILRS Past Missions, July 28, 2021, https://ilrs.gsfc.nasa.gov/missions/satellite_missions/past_missions/index.html.
- SDSG, November 25, 2021, https://ilrs.gsfc.nasa.gov/network/newg/sdsg/index.html.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d225e55-f5e3-4b80-8fad-e647d2434f25