PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Approach to Design Broadband Air Backed Piezoelectric Sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, an approach to the design of broadband thickness-mode piezoelectric transducer is presented. In this approach, simulation of discrete time model of the impulse response of matched and backed piezoelectric transducer is used to design high sensitivity, broad bandwidth, and short-duration impulse response transducers. The effect of matching the performance of transmitting and receiving air backed PZT-5A transducer working into water load is studied. The optimum acoustical characteristics of the quarter wavelength matching layers are determined by a compromise between sensitivity and pulse duration. The thickness of bonding layers is smaller than that of the quarter wavelength matching layers so that they do not change the resonance peak significantly. Our calculations show that the −3 dB air backed transducer bandwidth can be improved considerably by using quarter wavelength matching layers. The computer model developed in this work to predict the behavior of multilayer structures driven by a transient waveform agrees well with measured results. Furthermore, the advantage of this this model over other approaches is that the time signal for optimum set of matching layers can be predicted rapidly.
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Physics Department, Minia University, Egypt
  • Physics Department, Minia University, Egypt
autor
  • Physics Department, Minia University, Egypt
Bibliografia
  • 1. Ali M.G.S., Elsayed N.Z., Abdel Fattah A.M., Ali Gharieb A. (2012), Loss mechanisms in piezoceramic materials, J. Comput. Electron, 11, 196–202.
  • 2. Ali M.G.S. (2000), Analysis of Broadband Piezoelectric Transducers by Discrete Time Model, Egypt. J. Sol., 23, 2, 287–295.
  • 3. Ali M.G.S. (1999), Discrete time model of acoustic waves transmitted through layers, Journal of Sound and Vibration, 224, 2, 349–357.
  • 4. Beerman H.P. (1981), Optimizing matching layers for three-section broadband piezoelectric PZT-5A transducer operating into water, IEEE Trans. Sonics Ultrason., SU28, 1, 52–53.
  • 5. Berlincourt D.A., Curran D.R., Jaffe H. (1964), Piezoelectric and piezomagnetic materials and their function in transducers, Physical Acoustics IA, Mason W.P. [Ed.], Academic, New York.
  • 6. Desilets C.S., Fraser J.D., Kino S., Gordon S. (1978), The design of efficient broad-band piezoelectric transducers, Sonics and Ultrasonics, IEEE Transactions, 25, 3, 115–125.
  • 7. Estanbouli Y., Hayward G., Ramadas S.N., Barbenel J.C. (2006), A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarized piezoelectric Zones, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 5, 1028–1036.
  • 8. Goll J.H., Auld B.A. (1975), Multilayer Impedance Matching Schemes for Broad banding of Water Loaded Piezoelectric Transducers and High Q Electric Resonators, IEEE Transactions on Sonics and Ultrasonics, 22, 1, 52–53.
  • 9. Jury E.I. (1964), Theory and application of the z-transform method, Wiley, New York.
  • 10. Kazys R., Demcenko A., Zukauskas E., Mazeika L. (2006), Air-coupled ultrasonic investigation of multi-layered composite materials, Ultrasonics, 44,1, 819–822.
  • 11. Kazys R. (1978), Structural optimization methods of electroacoustic measuring circuits with piezoelectric transducers, Ultragarsas, 10, 29–42.
  • 12. Kazys R., Lukosevicius A. (1977), Optimization of the piezoelectric transducer response by means of electrical correcting circuits, Ultrasonics, 15, 111–116.
  • 13. Konovalov S.I. (2002), The effect of the matching layer thickness on the duration of pulses generated by a transducer, Acoustical Physics, 48, 5, 618–619.
  • 14. Lee H., Choi S., Moon W. (2010), A micro-machined piezoelectric flexural-mode hydrophone with air backing: benefit of air backing for enhancing sensitivity, J. Acoust. Soc. Am., 128, 3, 1033–1044.
  • 15. Lewis G.K. (1980), A Matrix Technique for Analyzing the Performance of Multilayered Front Matched and Backed Piezoelectric Ceramic Transducers, Acoustical Imaging, 8, 395–416.
  • 16. Mulholland A.J., Ramadas N., O’Leary R.L., Parr A.C.S., Hayward G., Troge A., Pethrick R.A. (2008), Enhancing the performance of piezoelectric ultrasound transducers by the use of multiple matching layers, Journal of Applied Mathematics, 73, 6, 936–949.
  • 17. Oppenheim A.V., Schafer R.W. (1975), Digital signal processing, Prentice-Hall, New Jersey.
  • 18. Persson H.W., Hertz C.H. (1985), Acoustic impedance matching of medical ultrasound transducer, Ultrasonics, 23, 2, 83–89.
  • 19. Sherrity S., Wiederick H.D., Mukherjee B.K., Sayer M. (1997), An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode, Journal of Physics D: Applied Physics, 30, 16, 2354–2363.
  • 20. Silk M.G. (1983), Predictions of the effect of some constructional variables on the performance of ultrasonic transducers, Ultrasonics, 21, 27–33.
  • 21. Shung K.K., Cannata J.M., Zhou Q.F. (2007) Piezoelectric materials for high frequency medical imaging applications: A review, Journal of Electro Ceramics, 19, 141–147.
  • 22. Souquet J., Defranould P., Desbois J. (1979), Design of low-loss wide-band ultrasonic transducers for noninvasive medical application, IEEE Pans. Son. Ultrason., SU-26, 75–81.
  • 23. Toda M., Thompson M. (2010), Novel multi-layer polymer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications, IEEE Trans. Ultrason. Ferroelectric. Freq. Control, 57, 12, 2818–2827.
  • 24. Toda M., Thompson M. (2012), Detailed Investigations of Polymer/Metal Multilayer Matching Layer and Backing Absorber Structures for Wideband Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59, 2, 231–242.
  • 25. Yaacob M.I.H., Arshad M.R., Manaf A.Abd. (2011), Modeling of circular piezoelectric micro ultrasonic transducer using CuAl10Ni5Fe4 on ZnO film forsonar applications, Acoustical Physics, 57, 2, 151–158.
  • 26. Yeongchin Chen (2010), Acoustical transmission line model for ultrasonic transducers for wide-bandwidth application, Acta Mechanica Solida Sinica, 23, 2, 124–134
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d1d2d26-141f-42c7-836a-427e811c6586
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.