PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Understanding fuel saving and clean fuel strategies towards green maritime

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to recent emission-associated regulations imposed on marine fuel, ship owners have been forced to seek alternate fuels, in order to meet the new limits. The aim of achieving low-carbon shipping by the year 2050, has meant that alternative marine fuels, as well as various technological and operational initiatives, need to be taken into account. This article evaluates and examines recent clean fuels and novel clean technologies for vessels. The alternative fuels are classified as low-carbon fuels, carbon-free fuels, and carbon neutral fuels, based on their properties. Fuel properties, the status of technological development, and existing challenges are also summarised in this paper. Furthermore, researchers have also investigated energy-saving devices and discovered that zero-carbon and virtually zero-carbon clean fuels, together with clean production, might play an important part in shipping, despite the commercial impracticability of existing costs and infrastructure. More interestingly, the transition to marine fuel is known to be a lengthy process; thus, early consensus-building, as well as action-adoption, in the maritime community is critical for meeting the expectations and aims of sustainable marine transportation.
Rocznik
Tom
Strony
146--164
Opis fizyczny
Bibliogr. 201 poz., rys., tab.
Twórcy
  • Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
  • Gdynia Maritime University, Faculty of Marine Engineering, Poland
autor
  • Gdansk University of Technology, Poland
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
Bibliografia
  • 1. Shell and Deloitte, “Decarbonising Shipping: All Hands on Deck.” Shell International BV, 2020.
  • 2. Z. Yang, Q. Tan, and P. Geng, “Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel,” Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0017.
  • 3. Z. Korczewski, “Energy and Emission Quality Ranking of Newly Produced Low-Sulphur Marine Fuels,” Polish Marit. Res., vol. 29, no. 4, pp. 77–87, Dec. 2022, doi: 10.2478/ pomr-2022-0045.
  • 4. O. Konur, C. O. Colpan, and O. Y. Saatcioglu, “A comprehensive review on organic Rankine cycle systems used as waste heat recovery technologies for marine applications,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 2, pp. 4083– 4122, Jun. 2022, doi: 10.1080/15567036.2022.2072981.
  • 5. E. Abdelhameed and H. Tashima, “Experimental investigation on methane inert gas dilution effect on marine gas diesel engine performance and emissions,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 2, pp. 3584–3596, Jun. 2022, doi: 10.1080/15567036.2022.2067603.
  • 6. G. Mallouppas and E. A. Yfantis, “Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals,” J. Mar. Sci. Eng., vol. 9, no. 4, p. 415, Apr. 2021, doi: 10.3390/jmse9040415.
  • 7. IMO, “Fourth IMO GHG study 2020,” 2020.
  • 8. A. Romano and Z. Yang, “Decarbonisation of shipping: A state of the art survey for 2000–2020,” Ocean Coast. Manag., vol. 214, p. 105936, Nov. 2021, doi: 10.1016/j.ocecoaman.2021.105936.
  • 9. B. Bradley and R. Hoyland, “Decarbonisation and Shipping: International Maritime Organization Ambitions and Measures,” 2020.
  • 10. A. T. Hoang and V. V. Pham, “A review on fuels used for marine diesel engines,” J. Mech. Eng. Res. Dev., vol. 41, no. 4, pp. 22–32, 2018.
  • 11. International Chamber of Shipping, “Environmental Performance: IMO Agreement on Technical Regulations to Reduce Ships’ CO2,” 2017.
  • 12. Z. Wan, A. el Makhloufi, Y. Chen, and J. Tang, “Decarbonizing the international shipping industry: Solutions and policy recommendations,” Mar. Pollut. Bull., vol. 126, pp. 428–435, Jan. 2018, doi: 10.1016/j.marpolbul.2017.11.064.
  • 13. O. Cherednichenko, S. Serbin, M. Tkach, J. Kowalski, and D. Chen, “Mathematical Modelling of Marine Power Plants with Thermochemical Fuel Treatment,” Polish Marit. Res., vol. 29, no. 3, pp. 99–108, Sep. 2022, doi: 10.2478/pomr-2022-0030.
  • 14. R. A. Halim, L. Kirstein, O. Merk, and L. M. Martinez, “Decarbonization pathways for international maritime transport: A model-based policy impact assessment,” Sustain., 2018, doi: 10.3390/su10072243.
  • 15. IMO, “Third IMO GHG Study 2014–Executive Summary and Final Report,” London, UK, 2015.
  • 16. G. Labeckas, S. Slavinskas, J. Rudnicki, and R. Zadrąg, “The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine,” Polish Marit. Res., vol. 25, no. 1, pp. 108–120, Mar. 2018, doi: 10.2478/ pomr-2018-0013.
  • 17. A. T. Hoang, V. D. Tran, V. H. Dong, and A. T. Le, “An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel,” J. Mar. Eng. Technol., vol. 21, no. 2, pp. 73–81, Mar. 2022, doi: 10.1080/20464177.2019.1595355.
  • 18. H. P. Nguyen, P. Q. P. Nguyen, D. K. P. Nguyen, V. D. Bui, and D. T. Nguyen, “Application of IoT Technologies in Seaport Management,” JOIV Int. J. Informatics Vis., vol. 7, no. 1, p. 228, Mar. 2023, doi: 10.30630/joiv.7.1.1697.
  • 19. B. Comer, “Maritime Shipping: Black Carbon Issues at the International Maritime Organization,” 2021, pp. 13–25.
  • 20. A. Astito and S. Hamdoune, “Estimating carbon dioxide and particulate matter emissions from ships using automatic identification system data,” Int. J. Comput. Appl., vol. 88, no. 6, 2014.
  • 21. A. S. Alamoush, A. I. Ölçer, and F. Ballini, “Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas emissions reduction,” Clean. Logist. Supply Chain, vol. 3, p. 100021, Mar. 2022, doi: 10.1016/j.clscn.2021.100021.
  • 22. S. Vakili, A. I. Ölçer, A. Schönborn, F. Ballini, and A. T. Hoang, “Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study,” Int. J. Energy Res., vol. 46, no. 14, pp. 20624–20649, Nov. 2022, doi: 10.1002/er.7649.
  • 23. O. B. Inal, B. Zincir, and C. Deniz, “Investigation on the decarbonization of shipping: An approach to hydrogen and ammonia,” Int. J. Hydrogen Energy, vol. 47, no. 45, pp. 19888– 19900, May 2022, doi: 10.1016/j.ijhydene.2022.01.189.
  • 24. L. Mihanović, M. Jelić, G. Radica, and N. Račić, “EXPERIMENTAL INVESTIGATION OF MARINE ENGINE EXHAUST EMISSIONS,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–14, Dec. 2021, doi: 10.1080/15567036.2021.2013344.
  • 25. V. D. Tran, A. T. Le, and A. T. Hoang, “An Experimental Study on the Performance Characteristics of a Diesel Engine Fueled with ULSD-Biodiesel Blends.,” Int. J. Renew. Energy Dev., vol. 10, no. 2, pp. 183–190, 2021.
  • 26. A. Al-Enazi, E. C. Okonkwo, Y. Bicer, and T. Al-Ansari, “A review of cleaner alternative fuels for maritime transportation,” Energy Reports, vol. 7, pp. 1962–1985, Nov. 2021, doi: 10.1016/j.egyr.2021.03.036.
  • 27. J. D. Ampah, A. A. Yusuf, S. Afrane, C. Jin, and H. Liu, “Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector,” J. Clean. Prod., vol. 320, p. 128871, Oct. 2021, doi: 10.1016/j.jclepro.2021.128871.
  • 28. A. D. Korberg, S. Brynolf, M. Grahn, and I. R. Skov, “Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships,” Renew. Sustain. Energy Rev., vol. 142, p. 110861, May 2021, doi: 10.1016/j. rser.2021.110861.
  • 29. W. Zeńczak and A. K. Gromadzińska, “Preliminary Analysis of the Use of Solid Biofuels in a Ship’s Power System,” Polish Marit. Res., vol. 27, no. 4, pp. 67–79, Dec. 2020, doi: 10.2478/ pomr-2020-0067.
  • 30. E. A. Bouman, E. Lindstad, A. I. Rialland, and A. H. Strømman, “State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review,” Transp. Res. Part D Transp. Environ., vol. 52, pp. 408–421, 2017, doi: 10.1016/j.trd.2017.03.022.
  • 31. H. Zeraatgar and M. H. Ghaemi, “The Analysis of Overall Ship Fuel Consumption in Acceleration Manoeuvre Using Hull-Propeller-Engine Interaction Principles and Governor Features,” Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/ pomr-2019-0018.
  • 32. P. N. Hoffmann, M. S. Eide, and Ø. Endresen, “Effect of proposed CO 2 emission reduction scenarios on capital expenditure,” Marit. Policy Manag., vol. 39, no. 4, pp. 443–460, Jul. 2012, doi: 10.1080/03088839.2012.690081.
  • 33. A. B. Jaffe and R. N. Stavins, “The energy-efficiency gap What does it mean?,” Energy Policy, vol. 22, no. 10, pp. 804–810, Oct. 1994, doi: 10.1016/0301-4215(94)90138-4.
  • 34. H. Johnson and K. Andersson, “The energy efficiency gap in shipping – Barriers to improvement,” Int. Assoc. Marit. Econ. Annu. Conf., 2011.
  • 35. K. Rudzki, P. Gomulka, and A. T. Hoang, “Optimization Model to Manage Ship Fuel Consumption and Navigation Time,” Polish Marit. Res., vol. 29, no. 3, pp. 141–153, Sep. 2022, doi: 10.2478/pomr-2022-0034.
  • 36. M. Feili, M. Hasanzadeh, H. Ghaebi, and E. Abdi Aghdam, “Comprehensive analysis of a novel cooling/electricity cogeneration system driven by waste heat of a marine diesel engine,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 3, pp. 7331–7346, Sep. 2022, doi: 10.1080/15567036.2022.2108167.
  • 37. Ø. Buhaug et al., “Second IMO Greenhouse Gas Study 2009,” Int. Marit. Organ., 2009.
  • 38. M. S. Eide, T. Longva, P. Hoffmann, Ø. Endresen, and S. B. Dalsøren, “Future cost scenarios for reduction of ship CO 2 emissions,” Marit. Policy Manag., vol. 38, no. 1, pp. 11–37, Jan. 2011, doi: 10.1080/03088839.2010.533711.
  • 39. J. Faber et al., “Technical support for European action to reducing Greenhouse Gas Emissions from international maritime transport,” 2009.
  • 40. E. C. EC, “White Paper: Roadmap to a Single European Transport Area–Towards a Competitive and Resource Efficient Transport System,” COM (2011) 144 final [online]. European Commission Brussels, 2011.
  • 41. Z. Bazari and T. Longva, “Assessment of IMO Mandated Energy Efficiency Measures for International Shipping,” 2011.
  • 42. A. Mellin and H. Rydhed, “Swedish ports’ attitudes towards regulations of the shipping sector’s emissions of CO 2,” Marit. Policy Manag., vol. 38, no. 4, pp. 437–450, Jul. 2011, doi: 10.1080/03088839.2011.588261.
  • 43. H. P. Nguyen, P. Q. P. Nguyen, and T. P. Nguyen, “Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A case study in Vietnam,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 950–962, Nov. 2022, doi: 10.14710/ijred.2022.46539.
  • 44. K. Takasaki, “CO2 Reduction from Main Engine,” J. Japan Inst. Mar. Eng. Eng., 2015, doi: 10.5988/jime.50.198.
  • 45. L. Čampara, N. Hasanspahić, and S. Vujičić, “Overview of MARPOL ANNEX VI regulations for prevention of air pollution from marine diesel engines,” SHS Web Conf., vol. 58, p. 01004, Dec. 2018, doi: 10.1051/shsconf/20185801004.
  • 46. V. V. Pham, A. T. Hoang, and H. C. Do, “Analysis and evaluation of database for the selection of propulsion systems for tankers,” 2020, doi: 10.1063/5.0007655.
  • 47. N. L. Trivyza, A. Rentizelas, and G. Theotokatos, “A Comparative Analysis of EEDI Versus Lifetime CO2 Emissions,” J. Mar. Sci. Eng., vol. 8, no. 1, p. 61, Jan. 2020, doi: 10.3390/jmse8010061.
  • 48. Hwang, Jeong, Jung, Kim, and Zhou, “Life Cycle Assessment of LNG Fueled Vessel in Domestic Services,” J. Mar. Sci. Eng., vol. 7, no. 10, p. 359, Oct. 2019, doi: 10.3390/jmse7100359.
  • 49. M. H. Ghaemi and H. Zeraatgar, “Impact of Propeller Emergence on Hull, Propeller, Engine, and Fuel Consumption Performance in Regular Head Waves,” Polish Marit. Res., vol. 29, no. 4, pp. 56–76, Dec. 2022, doi: 10.2478/ pomr-2022-0044.
  • 50. “Brief for Eu Member States,” pp. 1–9, 2013.
  • 51. GloMEEP, “Ship Emissions Tool Kit (Guide No. 3), Development of a national Ship emissions reduction strategy,” 2018.
  • 52. J. Z. Goldstein and J. P. George, “REDUCING NAVAL FOSSIL FUEL CONSUMPTION AT SEA IN THE 21ST CENTURY.” Monterey, CA; Naval Postgraduate School, 2021.
  • 53. V. V. Pham and A. T. Hoang, “Technological perspective for reducing emissions from marine engines,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 6, pp. 1989–2000, 2019, doi: 10.18517/ijaseit.9.6.10429.
  • 54. K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,” Ocean Eng., 2016, doi: 10.1016/j.oceaneng.2016.09.018.
  • 55. J. Herdzik, “Decarbonization of Marine Fuels—The Future of Shipping,” Energies, vol. 14, no. 14, p. 4311, Jul. 2021, doi: 10.3390/en14144311.
  • 56. A. Foretich, G. G. Zaimes, T. R. Hawkins, and E. Newes, “Challenges and opportunities for alternative fuels in the maritime sector,” Marit. Transp. Res., vol. 2, p. 100033, 2021, doi: 10.1016/j.martra.2021.100033.
  • 57. H. Wang, D. Liu, and G. Dai, “Review of maritime transportation air emission pollution and policy analysis,” J. Ocean Univ. China, vol. 8, no. 3, pp. 283–290, Sep. 2009, doi: 10.1007/s11802-009-0283-6.
  • 58. S. E. Tanzer, J. Posada, S. Geraedts, and A. Ramírez, “Lignocellulosic marine biofuel: Technoeconomic and environmental assessment for production in Brazil and Sweden,” J. Clean. Prod., vol. 239, p. 117845, Dec. 2019, doi: 10.1016/j.jclepro.2019.117845.
  • 59. N. Pavlenko, B. Comer, Y. Zhou, N. Clark, and D. Rutherford, “The climate implications of using LNG as a marine fuel,” Swedish Environ. Prot. Agency Stock. Sweden, 2020.
  • 60. TNO, “Environmental and Economic aspects of using LNG as a fuel for shipping in The Netherlands. Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO) Report,” Delft, TNO, vol. 48, no. July 2015, pp. 1–48, 2011.
  • 61. D. Lowell, H. Wang, and N. Lutsey, “Assessment of the fuel cycle impact of liquefied natural gas as used in international shipping,” Int. Counc. Clean Transp., 2013.
  • 62. S. Brynolf, E. Fridell, and K. Andersson, “Environmental assessment of marine fuels: liquefied natural gas, liquefied biogas, methanol and bio-methanol,” J. Clean. Prod., vol. 74, pp. 86–95, 2014.
  • 63. R. Zhao et al., “A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines,” Polish Marit. Res., vol. 27, no. 4, pp. 80–90, Dec. 2020, doi: 10.2478/pomr-2020-0068.
  • 64. J. Li, Y. Han, G. Mao, and P. Wang, “Optimization of exhaust emissions from marine engine fueled with LNG/diesel using response surface methodology,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 42, no. 12, pp. 1436–1448, Jun. 2020, doi: 10.1080/15567036.2019.1604859.
  • 65. M. A. Fun-sang Cepeda, N. N. Pereira, S. Kahn, and J.-D. Caprace, “A review of the use of LNG versus HFO in maritime industry,” Mar. Syst. Ocean Technol., vol. 14, no. 2–3, pp. 75–84, Sep. 2019, doi: 10.1007/s40868-019-00059-y.
  • 66. P. Balcombe, I. Staffell, I. G. Kerdan, J. F. Speirs, N. P. Brandon, and A. D. Hawkes, “How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis,” Energy, vol. 227, p. 120462, Jul. 2021, doi: 10.1016/j. energy.2021.120462.
  • 67. A. Bernatik, P. Senovsky, and M. Pitt, “LNG as a potential alternative fuel – Safety and security of storage facilities,” J. Loss Prev. Process Ind., vol. 24, no. 1, pp. 19–24, Jan. 2011, doi: 10.1016/j.jlp.2010.08.003.
  • 68. P. Balcombe et al., “How to decarbonise international shipping: Options for fuels, technologies and policies,” Energy Conversion and Management. 2019, doi: 10.1016/j. enconman.2018.12.080.
  • 69. D. Thrän et al., “Biomethane-status and factors affecting market development and trade,” 2014.
  • 70. E. Wetterlund, “System studies of forest-based biomass gasification.” Linköping University Electronic Press, 2012.
  • 71. V. A. dos Santos, P. Pereira da Silva, and L. M. V. Serrano, “The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels,” Energies, vol. 15, no. 10, p. 3571, May 2022, doi: 10.3390/ en15103571.
  • 72. A. A. Banawan, M. M. El Gohary, and I. S. Sadek, “Environmental and economical benefits of changing from marine diesel oil to natural-gas fuel for short-voyage highpower passenger ships,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., 2010, doi: 10.1243/14750902JEME181.
  • 73. M. Anderson, K. Salo, and E. Fridell, “Particle- and Gaseous Emissions from an LNG Powered Ship,” Environ. Sci. Technol., 2015, doi: 10.1021/acs.est.5b02678.
  • 74. J. Li, B. Wu, and G. Mao, “Research on the performance and emission characteristics of the LNG-diesel marine engine,” J. Nat. Gas Sci. Eng., 2015, doi: 10.1016/j.jngse.2015.09.036.
  • 75. N. R. Ammar, “Environmental and cost-effectiveness comparison of dual fuel propulsion options for emissions reduction onboard lng carriers,” Brodogradnja, 2019, doi: 10.21278/brod70304.
  • 76. G. P. Gerilla, K. Teknomo, and K. Hokao, “Environmental assessment of international transportation of products,” J. East. Asia Soc. Transp. Stud., vol. 6, pp. 3167–3182, 2005.
  • 77. M. M. Elgohary, I. S. Seddiek, and A. M. Salem, “Overview of alternative fuels with emphasis on the potential of liquefied natural gas as future marine fuel,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., 2015, doi: 10.1177/1475090214522778.
  • 78. I. Ø. Tvedten and S. Bauer, “Retrofitting towards a greener marine shipping future: Reassembling ship fuels and liquefied natural gas in Norway,” Energy Res. Soc. Sci., vol. 86, p. 102423, 2022.
  • 79. O. Schinas and M. Butler, “Feasibility and commercial considerations of LNG-fueled ships,” Ocean Eng., 2016, doi: 10.1016/j.oceaneng.2016.04.031.
  • 80. F. Burel, R. Taccani, and N. Zuliani, “Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion,” Energy, 2013, doi: 10.1016/j. energy.2013.05.002.
  • 81. M. Acciaro, “Real option analysis for environmental compliance: LNG and emission control areas,” Transp. Res. Part D Transp. Environ., vol. 28, pp. 41–50, May 2014, doi: 10.1016/j.trd.2013.12.007.
  • 82. T. Iannaccone, G. Landucci, A. Tugnoli, E. Salzano, and V. Cozzani, “Sustainability of cruise ship fuel systems: Comparison among LNG and diesel technologies,” J. Clean. Prod., vol. 260, p. 121069, 2020.
  • 83. H. Hadiyanto, A. P. Aini, W. Widayat, K. Kusmiyati, A. Budiman, and A. Roesyadi, “Multi-Feedstocks Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil and Waste Cooking Oil,” Int. J. Renew. Energy Dev., vol. 9, no. 1, pp. 119–123, Feb. 2020, doi: 10.14710/ijred.9.1.119-123.
  • 84. A. Kolakoti, M. Setiyo, and M. L. Rochman, “A green heterogeneous catalyst production and characterization for biodiesel production using RSM and ANN approach,” Int. J. Renew. Energy Dev., vol. 11, no. 3, pp. 703–712, Aug. 2022, doi: 10.14710/ijred.2022.43627.
  • 85. S. Mekhilef, S. Siga, and R. Saidur, “A review on palm oil biodiesel as a source of renewable fuel,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1937–1949, May 2011, doi: 10.1016/j. rser.2010.12.012.
  • 86. T. Kalyani, L. S. V. Prasad, and A. Kolakoti, “Biodiesel Production from a Naturally Grown Green Algae Spirogyra Using Heterogeneous Catalyst: An Approach to RSM Optimization Technique,” Int. J. Renew. Energy Dev., vol. 12, no. 2, pp. 300–312, Mar. 2023, doi: 10.14710/ijred.2023.50065.
  • 87. P. Sharma et al., “Experimental investigations on efficiency and instability of combustion process in a diesel engine fueled with ternary blends of hydrogen peroxide additive/ biodiesel/diesel,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 3, pp. 5929–5950, Sep. 2022, doi: 10.1080/15567036.2022.2091692.
  • 88. A. T. Hoang, “Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review,” Fuel Process. Technol., vol. 218, p. 106840, Jul. 2021, doi: 10.1016/j. fuproc.2021.106840.
  • 89. A. T. Hoang et al., “Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review,” Renew. Sustain. Energy Rev., 2020, doi: 10.1016/j.rser.2020.110204.
  • 90. M. H. Jayed, H. H. Masjuki, R. Saidur, M. A. Kalam, and M. I. Jahirul, “Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2452–2462, Dec. 2009, doi: 10.1016/j. rser.2009.06.023.
  • 91. Y. S. M. Altarazi et al., “Effects of biofuel on engines performance and emission characteristics: A review,” Energy, vol. 238, p. 121910, Jan. 2022, doi: 10.1016/j.energy.2021.121910.
  • 92. S. N et al., “Poultry fat biodiesel as a fuel substitute in dieselethanol blends for DI-CI engine: Experimental, modeling and optimization,” Energy, vol. 270, p. 126826, May 2023, doi: 10.1016/j.energy.2023.126826.
  • 93. N. Jeyakumar et al., “Using Pithecellobium Dulce seed-derived biodiesel combined with Groundnut shell nanoparticles for diesel engines as a well-advised approach toward sustainable waste-to-energy management,” Fuel, vol. 337, p. 127164, Apr. 2023, doi: 10.1016/j.fuel.2022.127164.
  • 94. K. Kolwzan and M. Narewski, “Alternative fuels for marine applications,” Latv. J. Chem., vol. 51, no. 4, p. 398, 2012.
  • 95. AWRI, “The feasibility of fuelling the research vessel D.J. Angus and W.G. Jackson with biodiesel,” 2003.
  • 96. C. Lagacé, “Biodiesel demonstration and assessment for tour boats in the old port of Montréal and Lachine canal national historic site,” 2005.
  • 97. C.-W. C. Hsieh and C. Felby, “Biofuels for the marine shipping sector,” IEA Bioenergy, p. 86, 2017.
  • 98. T. C. Holmseth, “Earthrace sets new world record,” Biodiesel magazine, 2008.
  • 99. C. W. Mohd Noor, M. M. Noor, and R. Mamat, “Biodiesel as alternative fuel for marine diesel engine applications: A review,” Renew. Sustain. Energy Rev., vol. 94, pp. 127–142, Oct. 2018, doi: 10.1016/j.rser.2018.05.031.
  • 100. MAN Diesel, “MAN B&W Stationary Engines: Alternative Fuel,” 2010.
  • 101. A. Imran, M. Varman, H. H. Masjuki, and M. A. Kalam, “Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission,” Renewable and Sustainable Energy Reviews. 2013, doi: 10.1016/j.rser.2013.05.070.
  • 102. T. T. Truong, X. P. Nguyen, V. V. Pham, V. V. Le, A. T. Le, and V. T. Bui, “Effect of alcohol additives on diesel engine performance: a review,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–25, Dec. 2021, doi: 10.1080/15567036.2021.2011490.
  • 103. D. Boopathi, S. Thiyagarajan, A. Sonthalia, P. Parthiban, S. Devanand, and V. Edwin Geo, “Effect of methanol fumigation on performance and emission characteristics in a waste cooking oil-fuelled single cylinder CI engine,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 41, no. 9, pp. 1088– 1096, May 2019, doi: 10.1080/15567036.2018.1539142.
  • 104. S. Mayer, J. Sjöholm, T. Murakami, K. Shimada, and N. Kjemtrup, “Performance and emission results from the MAN B&W LGI Low-Speed Engine Operating on Methanol,” in CIMAC Congress, 2016, pp. 6–10.
  • 105. T. Stojcevski, D. Jay, and L. Vicenzi, “Operation experience of world’s first methanol engine in a ferry installation,” in Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 2016, pp. 6–9.
  • 106. M. Svanberg, J. Ellis, J. Lundgren, and I. Landälv, “Renewable methanol as a fuel for the shipping industry,” Renew. Sustain. Energy Rev., vol. 94, pp. 1217–1228, 2018.
  • 107. Technology and Applications of Autonomous Underwater Vehicles. 2002.
  • 108. P. Gilbert, C. Walsh, M. Traut, U. Kesieme, K. Pazouki, and A. Murphy, “Assessment of full life-cycle air emissions of alternative shipping fuels,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2017.10.165.
  • 109. DNV GL, “Methanol as Marine Fuel: Environmental Benifits, Technology Readiness, and Economic Feasibility,” 2016.
  • 110. R. Song, J. Liu, L. Wang, and S. Liu, “Performance and Emissions of a Diesel Engine Fuelled with Methanol,” Energy & Fuels, vol. 22, no. 6, pp. 3883–3888, Nov. 2008, doi: 10.1021/ef800492r.
  • 111. T. Stojcevski, “Wärtsilä. Methanol as Engine Fuel: Challenges and Opportunities,” 2016.
  • 112. MAN Energy Solutions, “The Methanol-fuelled MAN B&W LGIM Engine. Application, service experience and latest development of the ME-LGIM engine.,” 2021.
  • 113. M. Túner, P. Aakko-Saksa, and P. Molander, “Engine Technology, Research, and Development for Methanol in Internal Combustion Engines: SUMMETH-Sustainable Marine Methanol, Deliverable D3. 1,” 2018.
  • 114. Bunkerworld, “Billion Miles targets methanol-fueled boats in Singapore from 2018,” 2017.
  • 115. J. Ellis and K. Tanneberger, “Study on the use of ethyl and methyl alcohol as alternative fuels in shipping,” Eur. Marit. Saf. Agency, 2015.
  • 116. I. A. Fernández, M. R. Gómez, J. R. Gómez, and L. M. López-González, “Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System,” Polish Marit. Res., vol. 27, no. 1, 2020, doi: 10.2478/pomr-2020-0009.
  • 117. A. T. Hoang and V. V. Pham, “A study on a solution to reduce emissions by using hydrogen as an alternative fuel for a diesel engine integrated exhaust gas recirculation,” in AIP Conference Proceedings, 2020, vol. 2235, no. 1, p. 20035.
  • 118. S. Öberg, M. Odenberger, and F. Johnsson, “Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems,” Int. J. Hydrogen Energy, vol. 47, no. 1, pp. 624–644, Jan. 2022, doi: 10.1016/j.ijhydene.2021.10.035.
  • 119. S. Verma, A. Suman, L. M. Das, S. C. Kaushik, and S. K. Tyagi, “A renewable pathway towards increased utilization of hydrogen in diesel engines,” Int. J. Hydrogen Energy, vol. 45, no. 8, pp. 5577–5587, Feb. 2020, doi: 10.1016/j. ijhydene.2019.05.213.
  • 120. A. Mohammadi, M. Shioji, Y. Nakai, W. Ishikura, and E. Tabo, “Performance and combustion characteristics of a direct injection SI hydrogen engine,” Int. J. Hydrogen Energy, 2007, doi: 10.1016/j.ijhydene.2006.06.005.
  • 121. M. M. Roy, E. Tomita, N. Kawahara, Y. Harada, and A. Sakane, “Comparison of performance and emissions of a supercharged dual-fuel engine fueled by hydrogen and hydrogen-containing gaseous fuels,” Int. J. Hydrogen Energy, 2011, doi: 10.1016/j.ijhydene.2011.03.070.
  • 122. B. Gopalakrishnan, N. Khanna, and D. Das, “DarkFermentative Biohydrogen Production,” in Biohydrogen, Elsevier, 2019, pp. 79–122.
  • 123. T. X. Nguyen-Thi and T. M. T. Bui, “Effects of Injection Strategies on Mixture Formation and Combustion in a Spark-Ignition Engine Fueled with Syngas-BiogasHydrogen,” Int. J. Renew. Energy Dev., vol. 12, no. 1, pp. 118– 128, Jan. 2023, doi: 10.14710/ijred.2023.49368.
  • 124. I. P. Jain, “Hydrogen the fuel for 21st century,” Int. J. Hydrogen Energy, vol. 34, no. 17, pp. 7368–7378, Sep. 2009, doi: 10.1016/j.ijhydene.2009.05.093.
  • 125. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, Apr. 2011, doi: 10.1016/j.apenergy.2010.09.030.
  • 126. V. G. Bui, T. M. T. Bui, A. T. Hoang, S. Nižetić, T. X. Nguyen Thi, and A. V. Vo, “Hydrogen-Enriched Biogas Premixed Charge Combustion and Emissions in Direct Injection and Indirect Injection Diesel Dual Fueled Engines: A Comparative Study,” J. Energy Resour. Technol., vol. 143, no. 12, Dec. 2021, doi: 10.1115/1.4051574.
  • 127. C. WHITE, R. STEEPER, and A. LUTZ, “The hydrogenfueled internal combustion engine: a technical review,” Int. J. Hydrogen Energy, vol. 31, no. 10, pp. 1292–1305, Aug. 2006, doi: 10.1016/j.ijhydene.2005.12.001.
  • 128. J. J. De-Troya, C. Álvarez, C. Fernández-Garrido, and L. Carral, “Analysing the possibilities of using fuel cells in ships,” International Journal of Hydrogen Energy. 2016, doi: 10.1016/j.ijhydene.2015.11.145.
  • 129. Z. E. Ships, “One Hundred Passengers and Zero Emissions: The First Ever Passenger Vessel to Sail Propelled by Fuel Cells.” 2013.
  • 130. C. J. McKinlay, S. R. Turnock, and D. A. Hudson, “Route to zero emission shipping: Hydrogen, ammonia or methanol?,” Int. J. Hydrogen Energy, vol. 46, no. 55, pp. 28282–28297, Aug. 2021, doi: 10.1016/j.ijhydene.2021.06.066.
  • 131. Y. Bicer and I. Dincer, “Clean fuel options with hydrogen for sea transportation: A life cycle approach,” Int. J. Hydrogen Energy, 2018, doi: 10.1016/j.ijhydene.2017.10.157.
  • 132. Fathom.world, “Is methanation the future of ship fuel?,” 2019.
  • 133. HyMethShip, “Hydrogen in combustion engines,” 2019.
  • 134. F. Bird, A. Clarke, P. Davies, and E. Surkovic, Ammonia : fuel and energy store. 2020.
  • 135. R. D. Milton et al., “Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H 2 /N 2 Fuel Cell,” Angew. Chemie Int. Ed., vol. 56, no. 10, pp. 2680–2683, Mar. 2017, doi: 10.1002/anie.201612500.
  • 136. V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides, “An Electrochemical Haber-Bosch Process,” Joule, vol. 4, no. 1, pp. 142–158, Jan. 2020, doi: 10.1016/j. joule.2019.10.006.
  • 137. R. F. Service, “Liquid sunshine,” 2018.
  • 138. P. Dimitriou and R. Javaid, “A review of ammonia as a compression ignition engine fuel,” Int. J. Hydrogen Energy, vol. 45, no. 11, pp. 7098–7118, Feb. 2020, doi: 10.1016/j. ijhydene.2019.12.209.
  • 139. I. S. Seddiek and N. R. Ammar, “Technical and ecoenvironmental analysis of blue/green ammonia-fueled RO/ RO ships,” Transp. Res. Part D Transp. Environ., vol. 114, p. 103547, Jan. 2023, doi: 10.1016/j.trd.2022.103547.
  • 140. N. De Vries, “Safe and Effective Application of Ammonia as a Marine Fuel Delft University of Technology,” 2019.
  • 141. MAN, “Engineering the Future Two-Stroke GreenAmmonia Engine,” 2019.
  • 142. F. Abbasov, “Roadmap to decarbonising European shipping,” 2018.
  • 143. Y. Bicer and I. Dincer, “Environmental impact categories of hydrogen and ammonia driven transoceanic maritime vehicles: A comparative evaluation,” Int. J. Hydrogen Energy, vol. 43, no. 9, pp. 4583–4596, 2018.
  • 144. MAERSK, “PRESS RELEASE Alcohol , Biomethane and Ammonia are the best-positioned fuels to reach zero net emissions 24 October 2019,” 2019.
  • 145. S.-J. Yeo, J. Kim, and W.-J. Lee, “Potential economic and environmental advantages of liquid petroleum gas as a marine fuel through analysis of registered ships in South Korea,” J. Clean. Prod., vol. 330, p. 129955, Jan. 2022, doi: 10.1016/j.jclepro.2021.129955.
  • 146. S. Kjartansson, “A Feasibility Study on LPG as Marine Fuel,” 2012.
  • 147. R. Laursen, “Ship operation using LPG and ammonia as fuel on MAN B&W dual fuel ME-LGIP engines,” 2018.
  • 148. E. Lindstad, B. Lagemann, A. Rialland, G. M. Gamlem, and A. Valland, “Reduction of maritime GHG emissions and the potential role of E-fuels,” Transp. Res. Part D Transp. Environ., vol. 101, p. 103075, Dec. 2021, doi: 10.1016/j. trd.2021.103075.
  • 149. B. Lagemann, E. Lindstad, K. Fagerholt, A. Rialland, and S. Ove Erikstad, “Optimal ship lifetime fuel and power system selection,” Transp. Res. Part D Transp. Environ., vol. 102, p. 103145, Jan. 2022, doi: 10.1016/j.trd.2021.103145.
  • 150. S.-H. Han, H.-S. Kim, B.-U. Han, and D.-J. Lee, “LPG A Study on Fuel Supply System of LPG Propulsion VLGC ME-LGIP Engine,” Bull. Soc. Nav. Archit. Korea, vol. 56, no. 4, pp. 10–14, 2019.
  • 151. B. Ashok, S. Denis Ashok, and C. Ramesh Kumar, “LPG diesel dual fuel engine – A critical review,” Alexandria Eng. J., vol. 54, no. 2, pp. 105–126, Jun. 2015, doi: 10.1016/j. aej.2015.03.002.
  • 152. K. W. Chun, M. Kim, and J.-J. Hur, “Development of a Marine LPG-Fueled High-Speed Engine for Electric Propulsion Systems,” J. Mar. Sci. Eng., vol. 10, no. 10, p. 1498, Oct. 2022, doi: 10.3390/jmse10101498.
  • 153. B. Ashok, S. D. Ashok, and C. R. Kumar, “LPG diesel dual fuel engine–A critical review,” Alexandria Eng. J., vol. 54, no. 2, pp. 105–126, 2015.
  • 154. The WLPGA, “LPG for Marine Engines, The Marine Alternative Fuel,” Charles de Gaulle, France, 2017.
  • 155. Michael Petersen and A. Eastern, “LPG as future bunker fuel,” 2019.
  • 156. K. Cullinane and S. Cullinane, “Policy on reducing shipping emissions: implications for ‘green ports,’” Green Ports, pp. 35–62, 2019.
  • 157. T. Zis, R. J. North, P. Angeloudis, W. Y. Ochieng, and M. G. H. Bell, “Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports,” Marit. Econ. Logist., vol. 16, no. 4, pp. 371–398, 2014.
  • 158. R. Bergqvist and J. Monios, “Green ports in theory and practice,” in Green ports, Elsevier, 2019, pp. 1–17.
  • 159. F. Fung, Z. Zhu, R. Becque, and B. Finamore, “Prevention and control of shipping and Port Air emissions in china,” NRDC white Pap., 2014.
  • 160. N. R. Ammar, “Energy-and cost-efficiency analysis of greenhouse gas emission reduction using slow steaming of ships: case study RO-RO cargo vessel,” Ships Offshore Struct., vol. 13, no. 8, pp. 868–876, 2018.
  • 161. C. C. Chang and C. M. Wang, “Evaluating the effects of green port policy: Case study of Kaohsiung harbor in Taiwan,” Transp. Res. Part D Transp. Environ., 2012, doi: 10.1016/j. trd.2011.11.006.
  • 162. J. J. Corbett, H. Wang, and J. J. Winebrake, “The effectiveness and costs of speed reductions on emissions from international shipping,” Transp. Res. Part D Transp. Environ., vol. 14, no. 8, pp. 593–598, 2009.
  • 163. J.-K. Woo and D. S.-H. Moon, “The effects of slow steaming on the environmental performance in liner shipping,” Marit. Policy Manag., vol. 41, no. 2, pp. 176–191, 2014.
  • 164. P. E. N. G. Yun, L. I. Xiangda, W. A. N. G. Wenyuan, L. I. U. Ke, and L. I. Chuan, “A simulation-based research on carbon emission mitigation strategies for green container terminals,” Ocean Eng., vol. 163, pp. 288–298, Sep. 2018, doi: 10.1016/j.oceaneng.2018.05.054.
  • 165. Alphaliner, “http://www.alphaliner.com/,” 2010.
  • 166. P. Cariou, “Is slow steaming a sustainable means of reducing CO2 emissions from container shipping?,” Transp. Res. Part D Transp. Environ., vol. 16, no. 3, pp. 260–264, 2011.
  • 167. M. Golias, M. Boile, S. Theofanis, and C. Efstathiou, “The berth-scheduling problem: Maximizing berth productivity and minimizing fuel consumption and emissions production,” Transp. Res. Rec., vol. 2166, no. 1, pp. 20–27, 2010.
  • 168. L. Kirstein, R. Halim, and O. Merk, “Decarbonising Maritime Transport.—Pathways to Zero-Carbon Shipping by 2035,” 2018.
  • 169. C. C. Chang and C. W. Jhang, “Reducing speed and fuel transfer of the green flag incentive program in kaohsiung port taiwan,” Transp. Res. Part D Transp. Environ., vol. 46, pp. 1–10, 2016.
  • 170. H. Winnes, L. Styhre, and E. Fridell, “Reducing GHG emissions from ships in port areas,” Res. Transp. Bus. Manag., 2015, doi: 10.1016/j.rtbm.2015.10.008.
  • 171. C. Kontovas and H. N. Psaraftis, “Reduction of emissions along the maritime intermodal container chain: operational models and policies,” Marit. Policy Manag., vol. 38, no. 4, pp. 451–469, 2011.
  • 172. R. T. Poulsen, S. Ponte, and H. Sornn-Friese, “Environmental upgrading in global value chains: The potential and limitations of ports in the greening of maritime transport,” Geoforum, vol. 89, pp. 83–95, Feb. 2018, doi: 10.1016/j. geoforum.2018.01.011.
  • 173. Y.-T. Tsai, C.-J. Liang, K.-H. Huang, K.-H. Hung, C.-W. Jheng, and J.-J. Liang, “Self-management of greenhouse gas and air pollutant emissions in Taichung Port, Taiwan,” Transp. Res. Part D Transp. Environ., vol. 63, pp. 576–587, 2018.
  • 174. G. Villalba and E. D. Gemechu, “Estimating GHG emissions of marine ports—the case of Barcelona,” Energy Policy, vol. 39, no. 3, pp. 1363–1368, 2011.
  • 175. S. López-Aparicio, D. Tønnesen, T. N. Thanh, and H. Neilson, “Shipping emissions in a Nordic port: Assessment of mitigation strategies,” Transp. Res. Part D Transp. Environ., 2017, doi: 10.1016/j.trd.2017.04.021.
  • 176. L. Styhre, H. Winnes, J. Black, J. Lee, and H. Le-Griffin, “Greenhouse gas emissions from ships in ports – Case studies in four continents,” Transp. Res. Part D Transp. Environ., 2017, doi: 10.1016/j.trd.2017.04.033.
  • 177. SPBP, “San Pedro Bay Ports Clean Air Action Plan Update. Port of Los Angeles and the Port of Long Beach,” 2017.
  • 178. D. Gibbs, P. Rigot-Muller, J. Mangan, and C. Lalwani, “The No 2/2023164 role of sea ports in end-to-end maritime transport chain emissions,” Energy Policy, vol. 64, pp. 337–348, 2014.
  • 179. D. S. H. Moon and J. K. Woo, “The impact of port operations on efficient ship operation from both economic and environmental perspectives,” Marit. Policy Manag., 2014, doi: 10.1080/03088839.2014.931607.
  • 180. H. Johnson and L. Styhre, “Increased energy efficiency in short sea shipping through decreased time in port,” Transp. Res. Part A Policy Pract., vol. 71, pp. 167–178, 2015.
  • 181. M. Tichavska, B. Tovar, D. Gritsenko, L. Johansson, and J. P. Jalkanen, “Air emissions from ships in port: Does regulation make a difference?,” Transp. Policy, vol. 75, pp. 128–140, 2019.
  • 182. A. Misra, K. Panchabikesan, S. K. Gowrishankar, E. Ayyasamy, and V. Ramalingam, “GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities–a case of the Port of Chennai,” Carbon Manag., vol. 8, no. 1, pp. 45–56, 2017.
  • 183. E. Díaz-Ruiz-Navamuel, A. O. Piris, and C. A. Pérez-Labajos, “Reduction in CO2 emissions in RoRo/Pax ports equipped with automatic mooring systems,” Environ. Pollut., vol. 241, pp. 879–886, 2018.
  • 184. A. Ortega Piris, E. Díaz-Ruiz-Navamuel, C. A. PérezLabajos, and J. Oria Chaveli, “Reduction of CO2 emissions with automatic mooring systems. The case of the port of Santander,” Atmos. Pollut. Res., 2018, doi: 10.1016/j. apr.2017.07.002.
  • 185. P. Andersson and P. Ivehammar, “Green approaches at sea – The benefits of adjusting speed instead of anchoring,” Transp. Res. Part D Transp. Environ., 2017, doi: 10.1016/j. trd.2017.01.010.
  • 186. International maritime organization, “Study of Emission Control and Energy Efficiency Measures for Ships in the Port Area,” Clim. Chang. 2013 – Phys. Sci. Basis, 2015.
  • 187. A. Azetsu, “Regulation of GHG Emissions and Trend of Countermeasures,” J. Japan Inst. Mar. Eng., vol. 51, no. 1, pp. 50–53, 2016, doi: 10.5988/jime.51.50.
  • 188. V. V. Pham and A. T. Hoang, “Analyzing and selecting the typical propulsion systems for ocean supply vessels,” 2020, doi: 10.1109/ICACCS48705.2020.9074276.
  • 189. J. Faber and M. Hoen, Estimated Index Values of Ships 20092016: Analysis of the Design Efficiency of Ships that Have Entered the Fleet Since 2009. CE Delft, 2017.
  • 190. T. and Environment, “Statistical analysis of the energy efficiency performance (EEDI) of new ships built in 20132017.” 2018.
  • 191. W. Tarełko, “The effect of hull biofouling on parameters characterising ship propulsion system efficiency,” Polish Marit. Res., 2014, doi: 10.2478/pomr-2014-0038.
  • 192. X. P. Nguyen, “A simulation study on the effects of hull form on aerodynamic performances of the ships,” in Proceedings of the 2019 1st International Conference on Sustainable Manufacturing, Materials and Technologies, 2020, p. 020015, doi: 10.1063/5.0000140.
  • 193. T. Smith et al., “CO2 Emissions from International Shipping: Possible reduction targets and their associated pathways,” 2016.
  • 194. T. Smith et al., “CO2 emissions from international shipping: Possible reduction targets and their associated pathways,” UMAS London, UK, 2016.
  • 195. P. Gilbert, A. Bows-Larkin, S. Mander, and C. Walsh, “Technologies for the high seas: Meeting the climate challenge,” Carbon Manag., 2014, doi: 10.1080/17583004.2015.1013676.
  • 196. Institute of Marine Engineering Science and Technology (IMarEST), “MEPC 62/INF.7 – Reduction of GHG emissions from ships - Marginal Abatement Costs and Cost Effectiveness of Energy-Efficiency Measures,” 2011.
  • 197. H. Lindstad and G. S. Eskeland, “Low carbon maritime transport: How speed, size and slenderness amounts to substantial capital energy substitution,” Transp. Res. Part D Transp. Environ., vol. 41, pp. 244–256, Dec. 2015, doi: 10.1016/j.trd.2015.10.006.
  • 198. N. Rehmatulla, J. Calleya, and T. Smith, “The implementation of technical energy efficiency and CO 2 emission reduction measures in shipping,” Ocean Eng., vol. 139, pp. 184–197, Jul. 2017, doi: 10.1016/j.oceaneng.2017.04.029.
  • 199. J. Carlton, J. Aldwinkle, and J. Anderson, “Future ship powering options: exploring alternative methods of ship propulsion,” London R. Acad. Eng., 2013.
  • 200. F. Tillig, W. Mao, and J. Ringsberg, “Systems modelling for energy-efficient shipping,” Chalmers University of Technology, 2015.
  • 201. P. Van Kluijven, L. Kwakernaak, F. Zoetmulder, M. Ruigrok, and K. de Bondt, “Contra-rotating propellers1,” Int. Shipbuild. Prog., vol. 3, no. 25, pp. 459–473, 2018, doi: 10.3233/isp-1956-32501.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d1c6a09-895b-453f-b7db-790ba6d61b98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.