PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Engineering example of the constraint forces in non-holonomic mechanical: forklift-truck robot motion. Part I

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the presented paper, a problem of nonholonomic constrained mechanical systems is treated. New methods in nonholonomic mechanics are applied to a problem of a Forklift-truck robot motion. This method of the geometrical theory of general nonholonomic constrained systems on fibered manifolds and their jet prolongations, based on so-called Chetaev-type constraint forces. The relevance of this theory for general types of nonholonomic constraints, not only linear or affine ones, was then verified on appropriate models. On the other hand, the equations of motion of a Forklift-truck robot are highly nonlinear and rolling without slipping condition can only be expressed by nonholonomic constraint equations. In this paper, the geometrical theory is applied to the above mentioned mechanical problem. The results of numerical solutions of constrained equations of motion, derived within the theory, are presented.
Rocznik
Strony
483--506
Opis fizyczny
Bibliogr. 36 poz., rys., wykr., wzory
Twórcy
autor
  • Department of Physics, Faculty of Science, Ibn Tofail University, B.P 242, 14000 Kenitra, Morocco
  • Department of Physics, Faculty of Science, Ibn Tofail University, B.P 242, 14000 Kenitra, Morocco
autor
  • University of British Columbia, 1935 Lower Mall, Vancouver, BC V6T 1X1 Canada
Bibliografia
  • [1] J. Brindley: The History of The Fork Lift, Warehouse & Logistic News (2005).
  • [2] M. Brdicka and J. Hladik: Theoretical Mechanics (in Czech), Academia, Praha (1987).
  • [3] F. Bullo and A. D. Lewis: Geometric Control of Mechanical Systems, Springer Verlag, New York, Heidelberg, Berlin (2004).
  • [4] F. Cardin and M. Favreti: On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18 (1996), 295-325.
  • [5] J. F. Carinena and M. F. Raada: Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen., 26 (1993), 1335-1351.
  • [6] G. Giachetta: Jet methods in nonholonomic mechanics, J. Math. Phys., 33 (1992), 1652-1655.
  • [7] J. Cortes, M. De Leon, J. C. Marrero and E. Martinez: Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst. A, 24 (2009), 213-271.
  • [8] L. Czudková and J. Musilová: Nonholonomic mechanics. A practical application of the geometrical theory on fibred manifolds to a planimeter motion, International Journal of Non-Linear Mechanics, 50,= (2013), 19-24.
  • [9] N. G. Chetaev: On the Gauss principle, Izv. Kazan. Fiz.-Mat. Obsc., 6 (1932-1933), 323 (in Russian).
  • [10] M. De Leon, J. C. Marrero and D. M. De Diego: Non-holonomic Lagrangian systems in jet manifolds, J. Phys. A: Math. Gen., 30 (1997a), 1167-1190.
  • [11] M. De Leon, J. C. Marrero and D. M. De Diego: Mechanical systems with nonlinear constraints, Int. Journ. Theor. Phys., 36(4), (1997b), 979-995.
  • [12] J. Janová and J. Musilová: Non-holonomic mechanics mechanics: A geometrical treatment of general coupled rolling motion, Int. J. Non-Linear Mechanics, 44 (2009), 98-105.
  • [13] W. S. Koon and J. E. Marsden: The Hamiltonian and Lagrangian approach to the dynamics of nonholonomic systems, Reports in Mathematical Physics, 40, (1997), 21-62.
  • [14] O. Krupková: The Geometry of Ordinary Variational Equations, Lecture Notes in Mathematics, Springer, Berlin, 1997b.
  • [15] O. Krupková: On the geometry of nonholonomicmechanical systems, in: Proceedings of the Conference on Differential Geometry and its Applications, (1998), p. 533.
  • [16] O. Krupková: Mechanical systems with nonholonomic constraints, J. Math. Phys., 38 (1997a), 5098.
  • [17] O. Krupková: Higher order mechanical systems with constraints, J. Math. Phys., 41 (2000), 5304.
  • [18] O. Krupková and J. Musilová: The relativistic particle as a mechanical system with nonlinear constraints, J. Phys. A: Math. Gen., 34 (2001), 3859.
  • [19] O. Krupková and J. Musilová: Non-holonomic variational systems, Rep. Math. Phys., 55 (2005), 211.
  • [20] H. H. Lee: Modeling and Trajectory Control of a Forklift-Like Wheeled Robot, In ASME 2014 InternationalMechanical Engineering Congress and Exposition, pp. V04AT04A024–V04AT04A024, American Society of Mechanical Engineers, 2014.
  • [21] X.-Z. Lai, C.-Z. Pan, M. Wu, S. X. Yang and W.-H. Cao: Control of an underactuated three-link passive-active-active manipulator based on three stages and stability analysis, Trans. ASME, J. Dyn. Syst. Meas. Control, 137(2), (2014), 021007-1-021007-9.
  • [22] S. Li and X. Wang: Finite-time consensus and collision avoidance control algorithms for multiple AUVs, Automatica, 49(11), (2013), 3359-3367.
  • [23] J. I. Neimark and N. A. Fufaev: Dynamics of nonholonomic systems, vol. 33 of Translations of Mathematical Monographs, Providence, Rhode Island: AMS, 1972.
  • [24] M. Ou, H. Du and S. Li: Finite-time formation control of multiple nonholonomicmobile robots, Int. J. Robust Nonlinear Control, 24(1), (2014), 40-165.
  • [25] M. Swaczyna: Variational aspects of nonholonomic mechanical systems, Ph. D. Thesis, Palacký University, Olomouc, 2005.
  • [26] M. Swaczyna: Several examples of nonholonomic mechanical systems, Communications in Mathematics, 19(1), (2011), 27-56.
  • [27] H. Sun, S. Li and C. Sun: Finite time integral sliding mode control of hypersonic vehicles, Nonlinear Dyn., 73(1), (2013), 229-244.
  • [28] J.-X. Xu, Z.-Q. Guo and T. H. Lee: Design and implementation of integral sliding mode control on an underactuated two-wheeled mobile robot, IEEE Trans. Ind. Electron., 61(7), (2014), 3671-3681.
  • [29] D. Xia, L. Wang and T. Chai: Neural-network friction compensation based energy swing-up control of Pendubot, IEEE Trans. Ind. Electron., 61(3), (2014), 1411-1423.
  • [30] X. Xin and Y. Liu: Reduced-order stable controllers for two-link underactuated planar robots, Automatica, 49(7), (2013), 2176-2183.
  • [31] N. Zimmert and O. Sawodny: Active damping control for bending oscillations of a forklift mast using flatness based techniques, In American Control Conference (ACC) (2010), pp. 1538-1543, IEEE 2010.
  • [32] X. Zhang, B. Xian, B. Zhao and Y. Zhang: Autonomous flight control of a nanoquadrotor helicopter in a GPS-denied environment using on-board vision, IEEE Trans. Ind. Electron., 62(10), (2015), 6392-6403.
  • [33] Q. Zang and J. Huang: Dynamics and control of three-dimensional slosh in a moving rectangular liquid container undergoing planar excitations, IEEE Trans. Ind. Electron., 62(4), (2015), 2309-2318.
  • [34] S. Haddout: (2018a). A practical application of the geometrical theory on fibered manifolds to an autonomous bicycle motion in mechanical system with nonholonomic constraints. Journal of Geometry and Physics, 123 (2018), 495-506.
  • [35] S. Haddout: Nonlinear reduced dynamics modelling and simulation of two-wheeled self-balancing mobile robot: SEGWAY system. Systems Science & Control Engineering, 6(1), (2018), 1-11.
  • [36] S. Haddout, Z. Chen and M. A. Guennoun: The Ackerman Steered Car non-holonomic Lagrangian mechanics system: mathematics problem treatment of the geometrical theory. Journal of Vibration Testing and System Dynamics, 1(4), (2017), 319-331.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d181a32-9507-47df-9e90-9d7a8e898d15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.