PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photoinduced Operation by Absorption of the Chalcogenide Nanocrystallite Containing Solar Cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is shown that for the solar cells containing chalcogenide nanocrystallites using external laser light, one can achieve some enhancement of the photovoltaic efficiency. Photoinduced treatment was carried out using two beams of splitted Er: glass laser operating at 1.54 μm. The light of the laser was incident at different angles and the angles between the beams also were varied. Also, the studies of nanocomposite effective structures have shown enhancement of effective nanocrystalline sizes during the laser treatment. Nanocrystallites of CuInS2 and CuZnSnS4 (CZTS) were used as chalcogenide materials. The optimization of the laser beam intensities and nanoparticle sizes were explored.
Twórcy
  • Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics And Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Physics Department, Faculty of Science, Ain Shams University, 11566 Abassia, Cairo, Egyp
autor
  • Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics And Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
autor
  • Czestochowa University of Technology, Institute of Electronic and Control System, 17 Armii Krajowej Av., 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Electronic and Control System, 17 Armii Krajowej Av., 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Material Science Engineering, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
autor
  • Department of Solid State Physics, Eastern European National University, 13 Voli Ave., 43025 Lutsk, Ukraine
Bibliografia
  • [1] P. K. Sarswat, M. L. Free, Demonstration of a sol-gel synthesized bifacial CZTS photoelectrochemical cell, Phys. Status Solidi A 208 (2), 2861–2864 (2011).
  • [2] H. Cherfouh, T. Chari, A. Guermoune, M. Siaj, B. Marsan, Preparation and characterization of a new CuInS2/graphene composite electrode, for application in electrochemical solar cells, in: Proceedings of the 219th Electrochemical Society (ECS) Meeting, 1870, Curran Associates, New Jersey 2011.
  • [3] N. A. Zeenath, P. K. V. Pillai, K. Bindu, M. Lakshmy, K. P. Vijayakumar, Study of trap levels by electrical techniques in p-type CuInSe2 thin films prepared using chemical bath deposition, J. Mater. Sci. 35 (10), 2619–2624 (2000).
  • [4] S. Ebrahim, I. Morsi, M. Soliman, M. Elsharkawi, A. Elzaem, Preparation and characterization of chalcopyrite compound for thin film solar cells, Alexandria Engineering Journal 50 (1), 35–42 (2011).
  • [5] P. K. Sarswat, M. L. Free, An evaluation of depletion layer photoactivity in Cu2ZnSnS4 thin film, Thin Solid Films 520 (13), 4422–4426 (2012).
  • [6] N. M. Shinde, D. P. Dubal, D. S. Dhawale, C. D. Lokhande, J.H. Kim, J.H. Moon, Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application, Mater. Res. Bull. 47 (2), 302–307 (2012).
  • [7] V. E. Ferry, M. A. Verschuuren, H. B. T. Li et al., Light trapping in ultrathin plasmonic solar cells, Opt. Express 18 (13), A237–A245, (2010).
  • [8] T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber, Adv. Mater. 22 (20), E156–E159 (2010).
  • [9] S. Ebrahim, I. Morsi, M. M. Soliman, A novel CuInS2/polyaniline base heterojunction solar cell, in: Proceedings of the International Conference on Control Automation and Systems (ICCAS ‘10), 366–369, IEEE, Gyeonggi-Do 2010.
  • [10] I. V. Kityk. IR-stimulated second harmonic generation in Sb2Te2Se-BaF2-PbCl2 glasses, J. Mod. Optic 51, 1179–1189 (2004).
  • [11] I. V. Kityk. IR-induced second harmonic generation in Sb2Te3-BaF2-PbCl2 glasses, J. Phys. Chem. B 107, 10083–10087 (2003).
  • [12] A. Majchrowski, I. V. Kityk, J. Ebothe, Influence of YAB: Cr3+ nanocrystallite sizes on two-photon absorption of YAB: Cr3+, Phys. Status Solidi B 241, 3047–3055 (2004).
  • [13] I. V. Kityk, A. Kassiba, K. J. Plucinski, J. Berdowski, Band structure of the large-sized SiC nanocomposites, Phys. Lett. A. 265, 403–410 (2000).
  • [14] B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, Electrochemical growth and properties of CuInS2 thin films for solar energy conversion, Thin Solid Films 511–512, 117–120 (2006).
  • [15] P. K. Sarswat, M. L. Free, A comparative study of Co-electrodeposited Cu2ZnSnS4 absorber material on fluorinated tin oxide and molybdenum substrates, J. Electron. Mater. 41 (8), 2210–2215 (2012).
  • [16] A. H. Reshak, K. Nouneh, I. V. Kityk, Jiri Bila, S. Auluck, H. Kamarudin, Z. Sekkat, Structural, electronic and optical properties in earth-abundant photovoltaic absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations, Int. J. Electrochem. Sci. 9, 955–974 (2014).
  • [17] K.J. Plucinski, A. M. El-Naggar, N. S. AlZayed, A. A. Albassam, A. O. Fedorchuk, D. Kulwas, I. V. Kityk, Laser stimulated changes of the effective energy gap in chalcogenide CuInS2 photovoltaic films, Mat. Sci. Semicon. Proc. 38, 184–187 (2015).
  • [18] M. G. Brik, I. V. Kityk, O. V. Parasyuk, G. L. Myronchuk, Photoinduced features of energy bandgap in quaternary Cu2CdGeS4 crystals. J. Phys.: Condens. Mat. 25, 505802–1–11 (2013).
Uwagi
EN
The project was financially supported by King Saud University, Vice Deanship of research chairs.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d13c51c-fb64-40a9-8ca9-463fefe43a4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.