PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the properties of mortars made of sorel cement

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena właściwości zapraw wykonanych z cementu Sorela
Języki publikacji
EN
Abstrakty
EN
The purpose of laboratory tests was to determine the effect of sodium silicate and selected hydrophobic agents on the basic physical parameters and freeze-thaw durability of mortars made with Sorel cement in variable proportions. In order to determine the mortars’ parameters, samples of the dimensions of 4 × 4 × 16 cm and boards of the diameters of 1 × 4 × 16 cm were prepared. Parameters such as water absorption, capillary absorption, compressive and flexural strength and frost resistance were tested. Mortar supplemented with sodium silicate in the quantity of 2.6% of all components demonstrated the best properties. None of the other hydrophobic agents that were used to mitigate the negative effects of water on Sorel cement mortars demonstrated such positive properties. Flexural strength tests of all mortar batches, performed on cuboid samples and boards of the thickness of 1 cm, demonstrated a similar improvement in strength. The lowest value of compressive strength was recorded for the reference batch at 46.6 MPa, whereas the highest value was recorded for the second batch containing sodium silicate, at 49.8 MPa. During the testing of frost resistance, the lowest reduction of compressive and flexural strength was recorded for the reference mortar and for mortar with sodium silicate. All mortars were varied in the MgO/MgCl2 ratio and the total amount of water, the observed effects may be caused by other variables. However it is possible to notice the positive effect of selected hydrophobic agents.
PL
Celem badań było określenie wpływu szkła wodnego oraz wybranych środków hydrofobowych na parametry zapraw wykonanych z cementu Sorela w zmiennych proporcjach. Do określenia parametrów zapraw wykonano próbki o wymiarach 4 × 4 × 16 cm oraz płyty o wymiarach 1 × 4 × 16 cm. Badano takie parametry jak: nasiąkliwość, podciąganie kapilarne, wytrzymałość na ściskanie i zginanie oraz mrozoodporność. Zaprawa z dodatkiem szkła wodnego w swoim składzie w ilości 2,6% wszystkich składników wykazała najlepsze właściwości. Pozostałe środki hydrofobowe zastosowane do ograniczenia negatywnego wpływu wody na zaprawy wykonane z cementu Sorela nie wykazują aż tak pozytywnych cech. Badania wytrzymałości na zginanie wykonane dla każdej serii zapraw na próbkach prostopadłościennych i płytach o grubości 1 cm wykazują podobne przyrosty wytrzymałości. Najmniejszą wytrzymałość na ściskanie zanotowano dla serii referencyjnej wynoszącą 46,6 MPa, zaś najwyższą dla serii drugiej (ze szkłem wodnym) – osiągnięto 49,8 MPa. W badaniu mrozoodporności po 150 cyklach zamrażania – rozmrażania najmniejszy spadek wytrzymałości na ściskanie i zginanie zanotowano dla zaprawy referencyjnej oraz zaprawy ze szkłem wodnym.
Słowa kluczowe
Rocznik
Strony
357--369
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
autor
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
autor
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
Bibliografia
  • [1] T. Rudnicki and R. Jurczak, “The impact of the addition of diabase dusts on the properties of cement pavement concrete”, Archives of Civil Engineering, vol. 68, no. 1, pp. 395-411, 2022, doi: 10.24425/ace.2022.140175.
  • [2] J. Gołaszewki and M. Gołaszewska, “Properties of mortars with Calcium Sulfoaluminate cements with the addition of Portland cement and limestone”, Archives of Civil Engineering, vol. 67, no. 2, pp. 425-435, 2021, doi: 10.24425/ace.2021.137177.
  • [3] J. Bensted, “Sorel cements and related. Part 1: Sorel cement, also known as magnesium oxychloride cement”, Cement Wapno Beton, no. 5, pp. 297-315, 2006.
  • [4] “Magnesium board – a novelty on the Polish construction market”, Materiały Budowlane, no. 8, pp. 20-21, 2012.
  • [5] Aprobata Techniczna ITB, AT-15-8776/2011. Magnesium plates MgO Green LS-TECH. Warsaw, 2011.
  • [6] ITB Technical Approval, AT-15-9016/2012. Composite sandwich panels LS-TECH. Warsaw, 2012.
  • [7] K. Zieliński, A. Szczepańska, and S. Staniszewski, “New use of magnesia binder, i.e. MgO boards vs gypsum boards”, Materiały Budowlane, no. 12, pp. 16-18, 2017, doi: 10.15199/33.2017.12.05.
  • [8] P. C. Aitcin, Binders for durable and sustainable concrete. Taylor&Francis, 2008.
  • [9] H. Qiao, et al., “The application review of magnesium oxychloride cement”, Journal of Chemical and Pharmaceutical Research, vol. 6, no. 5, pp. 180-185, 2014.
  • [10] L. Chong, et al., “Effect of limestone powder on the water stability of magnesium phosphate cement-based materials”, Construction and Building Materials, vol. 148, pp. 590-598, 2017, doi: 10.1016/j.conbuildmat.2017.04.207.
  • [11] M. D. de Castellar, et al., “Cracks in Sorel’s cement polishing bricks as a result of magnesium oxychloride carbonatation”, Cement and Concrete Research, vol. 26, no. 8, pp. 1199-1202, 1996, doi: 10.1016/0008-8846(96)00102-0.
  • [12] P. He, C. S. Poon, and D. Tsang, “Effect of pulverized fuel ash and CO2 curing on the water resistance of magnesium oxychloride cement (MOC)”, Cement and Concrete Research, vol. 97, pp. 115-122, 2017, doi: 10.1016/j.cemconres.2017.03.005.
  • [13] S. Malinowski and J. Jaroszyńska-Wolińska, “The physical and mechanical properties of magnesium oxychloride cement-based materials”, Budownictwo i Architektura, vol. 14, no. 4, pp. 89-98, 2015.
  • [14] Z. Liu, et al., “Experimental investigation on the properties and microstructure of magnesium oxychloride cement prepared with caustic magnesite and dolomite”, Construction and Building Materials, vol. 85, pp. 247-255, 2015, doi: 10.1016/j.conbuildmat.2015.01.056.
  • [15] S. Walling and J. L. Provis, “Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?”, Chemical Review, vol. 116, no. 7, pp. 4170-4204, 2016, doi: 10.1021/acs.chemrev.5b00463.
  • [16] Z. Zhou, et al., “Simulation of the properties of MgO-MgCl2-H2O system by thermodynamic method”, Cement and Concrete Research, vol. 68, pp. 105-111, 2015, doi: 10.1016/j.cemconres.2014.11.006.
  • [17] A. Orlov and T. Chernykh, “Research of water resistance and heat resistance of magnesium phosphate cements”, Procedia Engineering, vol. 150, pp. 1623-1626, 2016, doi: 10.1016/j.proeng.2016.07.140.
  • [18] T. Demediuk and W. F. Cole, “A study of Mangesium Oxysulphates”, Australian Journal of Chemistry vol. 10, no. 3, pp. 287-294, 1957, doi: 10.1071/CH9570287.
  • [19] B. Bukowski, et al., Budownictwo betonowe. T. 1. Technologia betonu. cz. 1. Arkady, 1963.
  • [20] W. Kurdowski and F. Sorrentino, “Special cements”, in Structure and performance of cements, 1st ed. London and New York: Applied Science Publishers, 1983, pp. 471-554.
  • [21] D. Deng, “The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement”, Cement and Concrete Research, vol. 33, no. 9, pp. 1311-1317, 2003, doi: 10.1016/S0008-8846(03)00043-7.
  • [22] D. Deng and C. Zang, “The effect of aluminate minerals on the phases in magnesium oxychloride cement”, Cement and Concrete Research, vol. 26, no. 8, pp. 1203-1211, 1996, doi: 10.1016/0008-8846(96)00101-9.
  • [23] Z. Li and C. K. Chau, “Influence of molar ratios on properties of magnesium oxychloride cement”, Cement and Concrete Research, vol. 37, no. 6, pp. 866-870, 2007, doi: 10.1016/j.cemconres.2007.03.015.
  • [24] Y. Tan, Y. Liu, and L. Grover, “Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial”, Cement and Concrete Research, vol. 56, pp. 69-74, 2014, doi: 10.1016/j.cemconres.2013.11.001.
  • [25] G. Li, et al., “Experimental study on urban refuse/magnesium oxychloride cement compound floor tile”, Cement and Concrete Research, vol. 33, no. 10, pp. 1663-1668, 2003, doi: 10.1016/S0008-8846(03)00136-4.
  • [26] M. Ayman, et al., “Effect of type of mixing water and sand on the physico-mechanical properties of magnesia cement masonry units”, HBRC Journal, vol. 8, no. 1, pp. 8-13, 2012, doi: 10.1016/j.hbrcj.2012.08.002.
  • [27] P. Maravelaki-Kalaitzaki and G. Moraitou, “Sorel’s cement mortars. Decay susceptibility and effect on Pentelic marble”, Cement and Concrete Research, vol. 29, no. 12, pp. 1929-1935, 1999, doi: 10.1016/S0008-8846(99)00197-0.
  • [28] Y. Li, et al., “Compressive strength of fly ash magnesium oxychloride cement containg granite wastes”, Construction and Building Materials, vol. 38, pp. 1-7, 2013, doi: 10.1016/j.conbuildmat.2012.06.016.
  • [29] A. Kuśnierz, “Glass recycling”, Works of the Institute of Ceramics and Building Materials, no. 6, pp. 22-33, 2010.
  • [30] B. Lenk, “Specification of AGR M100 – Glass flour”, Art Glass Recykling, Zielona Góra, 2010.
  • [31] PN-EN 13057:2002 Products and systems for the protection and repair of concrete structures – Test methods – Determination of resistance of capillary absorption.
  • [32] PN-88/B-06250 Standard concrete.
  • [33] PN-EN 12390-5 Flexural strength of test specimens.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d1152f7-094e-4414-a10a-045d7cd1cb44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.