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Abstract. A pair of vertices x and y in a graph G are said to be resolved by a vertex
w if the distance from x to w is not equal to the distance from y to w. We say that G is
resolved by a subset of its vertices W if every pair of vertices in G is resolved by some
vertex in W . The minimum cardinality of a resolving set for G is called the metric
dimension of G, denoted by dim(G). The circulant graph Cn(1, 2, . . . , t) is the Cayley
graph Cay(Zn : {±1, ±2, . . . , ±t}). In this note we prove that, for n = 2kt + 2t,
dim(Cn(1, 2, . . . , t)) ≥ t + 2, confirming Conjecture 4.1.2 in [K. Chau, S. Gosselin,
The metric dimension of circulant graphs and their Cartesian products, Opuscula Math.
37 (2017), 509–534].
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1. INTRODUCTION

1.1. DEFINITIONS

Let G = (V, E) be a connected graph, and let d(x, y) denote the distance between
vertices x, y ∈ V (G). A subset W ⊆ V (G) is called a resolving set for G if for every
pair of distinct vertices x, y ∈ V (G), there is w ∈ W such that d(x, w) ̸= d(y, w).
The minimum cardinality of a resolving set for G is called the metric dimension of G,
denoted by dim(G). A set W of vertices of G is said to distinguish a set S ⊆ V (G) if
every pair of vertices of S is resolved by some vertex of W .

For positive integers t and n, the circulant graph Cn(1, 2, . . . , t) is the sim-
ple graph with vertex set Zn = {v0, v1, . . . , vn−1}, the integers modulo n, in
which vertex vi is adjacent to the vertices vi−t, vi−t+1, . . . , vi−1, vi+1, . . . , vi+t−1, vi+t

(mod n) in Cn(1, 2, . . . , t). Observe that the distance between two vertices vi and vj

in G = Cn(1, 2, . . . , t) is given by

dG(vi, vj) =





⌈
|i−j|

t

⌉
if |i − j| < ⌈ n

2 ⌉,⌈
n−|i−j|

t

⌉
if |i − j| ≥ ⌈ n

2 ⌉.
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The outer cycle of the circulant graph G = Cn(1, 2, . . . , t) is a spanning subgraph
of G in which the vertex vi is adjacent to exactly the vertices vi+1 and vi−1. We denote
this outer cycle by C. A set of vertices vi, vi+1, . . . , vi+s with consecutive indices are
called consecutive vertices of G. For a vertex vi of G = Cn(1, 2, . . . , t) where n is even,
we define the right side of vi by

R(vi) = {vi+1, vi+2, . . . , vi+ n
2 −1}.

Similarly, we define the left side of vi by

L(vi) = {vi−1, vi−2, . . . , vi− n
2 +1}.

For a vertex vi ∈ G, the opposite vertex of vi is the vertex vi+ n
2

.
In the graph of Figure 1, R(0) = {1, 2, 3, 4, 5}, L(0) = {7, 8, 9, 10, 11}, R(7) =

{8, 9, 10, 11, 0} and L(7) = {2, 3, 4, 5, 6}. The opposite vertex of 0 is 6. Notice that
|R(u)| = |L(v)| for all u, v ∈ V (G). Also,

L(u) = R
(

u + n

2 (mod n)
)

and R(u) = L
(

u + n

2 (mod n)
)

.
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Fig. 1. G = C12(1,2,3)

For a vertex u of Cn(1, 2, . . . , t) and an integer i (0 ≤ i ≤ k), the right ith

neighborhood of u, denoted N+
i (u), is the set of consecutive vertices in R(u) at distance

i from u. Similarly, the left ith neighbourhood of u, denoted N−
i (u), is the set of

consecutive vertices in L(u) at distance i from u. The (k + 1)th neighbourhood of u,
denoted Nk+1(u), is the set of consecutive vertices at distance k + 1 from u. In the
graph G of Figure 1, N+

0 (0) = N−
0 (0) = {0}, N+

1 (0) = {1, 2, 3}, N−
1 (0) = {9, 10, 11},

and N2(0) = {4, 5, 6, 7, 8}.
Note that if n = 2tk + r, where r ∈ {2, 3, . . . , 2t, 2t + 1}, then the circulant graph

Cn(1, 2, . . . , t) has diameter k + 1, and for any vertex u,

|N+
i (u)| = |N−

i (u)| =
{

1 if i = 0,

t if 1 ≤ i ≤ k
and |Nk+1(u)| = r − 1.
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1.2. HISTORY AND LAYOUT OF THE PAPER

The concept of the metric dimension of a graph was first introduced by Slater [15, 16],
and independently by Harary and Melter [9]. Their introduction of this invariant was
motivated by its application to the placement of a minimum number of sonar/loran
detecting devices in a network so that the position of every vertex in the network can be
uniquely described in terms of its distances to the devices in the set. Khuller et al. [12]
later studied the metric dimension as an application to the navigation of robots in
a graph space, and showed that the problem of determining the metric dimension of
a given graph is NP-hard, and they determined the metric dimension of trees. An
alternate proof of the formula for the metric dimension of trees was given by Char-
trand et al. in [5], and they characterized the graphs of order n with metric dimension
1 (paths), n − 1 (complete graphs) and n − 2. Their study of the metric dimension was
motivated by its applications to a problem in pharmaceutical chemistry. The metric
dimension of a graph is related to several other well studied graph invariants such
as the determining number (the base size of its automorphism group), and a good
survey of these invariants and their relation to one another was written by Bailey and
Cameron in 2011 [1].

Due to the fact that metric dimension has applications in network discovery and
verification, combinatorial optimization, chemistry, and many other areas, researchers
focus on computing or bounding the metric dimension of certain classes of graphs.
In particular, there is great interest in finding classes of graphs whose metric dimension
does not increase with the number of vertices. Such classes of graphs are said to have
bounded metric dimension. Circulant graphs are an important class of graphs that
can be used in the design of local area networks. They have been used for decades
in the design of computer and telecommunication networks due to their optimal
fault-tolerance and routing capabilities. Javaid et al. [11] initiated a study of the
metric dimension of circulants as some classes of these graphs had been shown to have
bounded metric dimension. Imran et al. [10] later bounded the metric dimension of
Cn(1, 2) and Cn(1, 2, 3), and then Borchert and Gosselin [2] extended their results and
determined the exact metric dimension of these two families of circulants for all n.

Proposition 1.1 ([2]).

(1) For n ≥ 6,

dim(Cn(1, 2)) =
{

4 if n ≡ 1 mod 4,

3 otherwise.

(2) For n ≥ 8,

dim(Cn(1, 2, 3)) =
{

5 if n ≡ 1 mod 6,

4 otherwise.

In 2014, Grigorious et al. [8] bounded the metric dimension of the circulant graph
Cn(1, 2, . . . , t) for all n and t, as stated in the following result.
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Proposition 1.2. Suppose n ≡ r mod 2t where 2 ≤ r ≤ 2t + 1. Then

dim(Cn(1, 2, . . . , t)) ≤
{

t + 1 if 2 ≤ r ≤ t + 1,

r − 1 if t + 2 ≤ r ≤ 2t + 1.

The bounds in Propositions 1.2 were obtained from resolving sets consisting of
consecutive vertices on the outer cycle of Cn(1, 2, . . . , t). In 2017, Vetrík [17] improved
on these upper bounds for some values of r, and proved some lower bounds on metric
dimension of these graphs.

Proposition 1.3 ([17]).

(1) If n = 2tk + t where t ≥ 4 is even and k ≥ 2, then

dim(Cn(1, 2, . . . , t)) ≤ t.

(2) If n = 2tk + t + p where t and p are even, t ≥ 4, 2 ≤ p ≤ t and k ≥ 1, then

dim(Cn(1, 2, . . . , t)) ≤ t + p

2 .

In addition, Vetrík gave the following lower bounds on dim(Cn(1, 2, . . . , t)).

Proposition 1.4 ([17]).

(1) If n ≥ t2 + 1 where t ≥ 2, then

dim(Cn(1, 2, . . . , t)) ≥ t.

(2) If n = 2tk + r where t ≥ 2, and t + 2 ≤ r ≤ 2t + 1, then

dim(Cn(1, 2, . . . , t)) ≥ t + 1.

In 2017, Chau and Gosselin [6] showed that, for large enough n,

dim(Cn(1, 2, . . . , t)) = dim(Cn+2t(1, 2, . . . , t)),

which implies that the metric dimension of these circulants is completely determined
by the congruence class of n modulo 2t, and they improved on the known bounds on
the metric dimension of Cn(1, 2, . . . , t) for some congruence classes. Their results are
summarized below.

Proposition 1.5 ([6]). Let G = Cn(1, 2, . . . , t) where n = 2tk + r, t ≥ 4 and k ≥ 2.

(1) If n ≡ r mod 2t where t + 1 ≤ r ≤ 2t + 2, then dim(G) ≥ t + 1.
(2) If n ≡ r mod 2t where r = 2, t + 1, t + 2, then dim(G) = t + 1.
(3) If n ≡ 0 mod 2t where t is odd, then t + 1 ≤ dim(G) ≤ 2t − 2.
(4) If n ≡ 1 mod 2t, then t + 2 ≤ dim(G) ≤ 2t − 2.
(5) If n ≡ 1 mod 8 where t = 4, then dim(G) = 6.
(6) If n ≡ (t + 3) mod 2t where t is odd then dim(G) = t + 1.
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Chau and Gosselin had also asserted that for 3 ≤ r ≤ t, dim(G) ≥ t whenever
n ≥ 2t + 1, but this result has since been shown to be incorrect by Vetrík et al. in [18],
who proved that the metric dimension of G = Cn(1, 2, . . . , t) can be less than t, when
n < t2 + 1. Chau and Gosselin [6] made the following conjectures, based on data
in their appendix computed by Robert Bailey using the program GAP.

Conjecture 1.6. Let G = Cn(1, 2, . . . , t) where n = 2tk + r, t ≥ 4 and k ≥ 2.

(1) If n ≡ t mod 2t where t is odd, then dim(G) = t + 1 (proved in [7]).
(2) If n ≡ 0 mod 2t, then dim(G) ≥ t + 2.
(3) If n ≡ (t + 3) mod 2t where t is even, then dim(G) = t + 2.
(4) If n ≡ r mod 2t where t is even, 3 ≤ r ≤ t − 1, and k = 1 then dim(G) = t.

In 2023, Gao et al. [7] proved that Conjecture 1.6 (1) is true. In this paper, we will
prove that Conjecture 1.6(2) also holds. Conjecture (4) was disproved by Vetrík et al.
in 2023 [18], but Conjecture (3) is still open.

To prove Conjecture 1.6(2), we will make use of the following lemma which was
proved in [7].

Lemma 1.7 ([7]). Let G = Cn(1, 2, . . . , t) where n = 2tk + r, t ≤ r ≤ 2t + 1 and
2 ≤ m ≤ t. If a vertex set W can distinguish m consecutive vertices of G, then
|W | ≥ m − 1.

In Section 2, we prove some preliminary results about dim(G = Cn(1, 2, . . . , t)) for
n = 2tk + 2t, toward a proof of Conjecture 1.6(2). In Section 3, we prove our main
result, Theorem 3.1.

2. PRELIMINARY RESULTS

The first result we prove is a useful lemma about distinguishing consecutive sets of
vertices in Cn(1, 2, . . . , t). Lemma 1.7 is a generalization of Lemma 2.2 in [7].

Lemma 2.1. Let n = 2tk + r such that t + 1 ≤ r ≤ 2t + 1. If a vertex set
W ⊆ V (Cn(1, 2, . . . , t)) can distinguish t + 1 consecutive vertices, then |W | ≥ t.

Proof. Since Cn(1, 2, . . . , t) is vertex-transitive, we may assume without loss of gen-
erality that W distinguishes V1 = {v1, v2, . . . , vt, vt+1}. Let W1 = W ∩ V1, where
|W1| = p. If p ≥ t then |W | ≥ p ≥ t and we are done. So assume p ≤ t − 1. Let
V1 \W1 = {vi1 , vi2 , . . . , vit+1−p}. Notice, d(u, v) = 1 for all u, v ∈ V1 and u ̸= v.
Thus, no vertex in W1 resolves any pair of vertices in V1\W1. However, since W is
a distinguishing set for V1, W\W1 must distinguish V1\W1. Thus, W must resolve
the pairs (vi1 , vi2), (vi2 , vi3), . . . , (vit−p

, vit+1−p
). Since |N+

j (u)| = |N−
j (t)| ≥ t for all

1 ≤ j ≤ k, and |Nk+1(t)| ≥ t, any vertex in W\W1 can resolve at most one pair
of vertices from (vi1 , vi2), (vi2 , vi3), . . . , (vit−p

, vit+1−p
). Therefore, |W\W1| ≥ t − p.

Hence,
|W | = |W1| + |W\W1| ≥ p + t − p = t.
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The following lemmas are specifically about dim(Cn(1, 2, . . . , t)) where n = 2kt+2t
(i.e., r = 2t). Since n is divisible by t, it is useful to consider the congruence classes
modulo t of the indices of the vertices in a resolving set. For each i ∈ {0, 1, . . . , t},
we define [i]t = {vj ∈ Cn(1, 2, . . . , t) : j ≡ i mod t}. The first result applies when
two vertices in a resolving set for Cn(1, 2, . . . , t) have indices from the same congruence
class modulo t.

Lemma 2.2. Let a graph G = Cn(1, 2, . . . , t) where n = 2kt+2t. If W is the resolving
set of G containing two vertices u, v ∈ [i]t and a vertex w ∈ W such that u, v ∈ L(w)
or u, v ∈ R(w), then |W | ≥ t + 2.

Proof. Let V (G) = {0, 1, 2, . . . , n − 1}. We know that

Nk+1(w) =
{

w + kt + 1, w + kt + 2, . . . , w + n

2 = w + kt + t, . . . , w + kt + 2t − 1
}

where vertices in Nk+1 are taken modulo n.
Case 1. w ∈ [i]t.

If u, v ∈ R(w), then u, v do not resolve any pair of vertices in

V1 = {w + kt + 1, w + kt + 2, . . . , w + kt + t}.

Since V1 ⊆ Nk+1(w), w does not resolve any pair of vertices in V1. Because W is
a resolving set of G, W\{u, v, w} must distinguish V1. Therefore, by Lemma 1.7,
|W\{w, u, v}| ≥ t − 1. Finally,

|W | = |W\{w, u, v}| + |{w, u, v}| ≥ t − 1 + 3 = t + 2.

On the other hand, if u, v ∈ L(w), then u, v do not resolve any pair of vertices in

V1 = {w + kt + t, w + kt + t + 1, . . . , w + kt + 2t − 1}.

Since V1 ⊆ Nk+1(w), w does not resolve any pair of vertices in V1. Because W is
a resolving set of G, W\{u, v, w} must distinguish V1. Therefore, by Lemma 1.7,
|W\{w, u, v}| ≥ t − 1. Finally,

|W | = |W\{w, u, v}| + |{w, u, v}| ≥ t − 1 + 3 = t + 2.

Case 2. w /∈ [i]t.
Since w /∈ [i]t, [w]t ̸= [i]t therefore u /∈ [w]t = [w+kt+t]t and v /∈ [w]t = [w+kt+t]t.

Subcase 2.1. u, v ∈ R(w).
We know [w + kt + 1]t, [w + kt + 2]t, . . . , [w + kt + t]t are all the congruence classes

modulo t. Since u and v are not in [w + kt + t]t, they must be in one of [w + kt + j]t
where 1 ≤ j ≤ t − 1. Now Let

V1 = {w + kt + j + 1, w + kt + j + 2, . . . , w + kt + j + t}.
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Since j ≤ t − 1,

w + kt + j + t ≤ w + kt + t − 1 + t = w + kt + 2t − 1.

Therefore, V1 ⊆ Nk+1(w). Furthermore, vertex w, u, v do not resolve any pair of vertices
in V1. However, since W is a resolving set of G, W\{w, u, v} must distinguish V1.
Therefore, by Lemma 1.7, |W\{w, u, v}| ≥ t − 1. Finally,

|W | = |W\{w, u, v}| + |{w, u, v}| ≥ t − 1 + 3 = t + 2.

Subcase 2.2. u, v ∈ L(w).
We know [w + kt + t]t, [w + kt + t + 1]t, . . . , [w + kt + 2t − 1]t are all the congruence

classes modulo t. Since u and v are not in [w + kt + t]t, they must be in one of
[w + kt + t + j]t where 1 ≤ j ≤ t − 1. Now Let

V1 = {w + kt + t + j − 1, w + kt + t + j − 2, . . . , w + kt + j}.

Since j ≥ 1, w + kt + j ≥ w + kt + 1. Therefore, V1 ⊆ Nk+1(w). Furthermore, vertex
w, u, v do not resolve any pair of vertices in V1. However, since W is a resolving set of
G, W\{w, u, v} must distinguish V1. Therefore, by Lemma 1.7, |W\{w, u, v}| ≥ t − 1.
Finally,

|W | = |W\{w, u, v}| + |{w, u, v}| ≥ t − 1 + 3 = t + 2.

The next result applies when three vertices of a resolving set for Cn(1, 2, . . . , t)
have indices from the same congruence class modulo t.

Lemma 2.3. Let a graph G = Cn(1, 2, . . . , t) where n = 2kt + 2t, and t ≥ 4. If W is
the resolving set of G containing three vertices u, v, w ∈ [i]t, then |W | ≥ t + 2.

Proof. Assume V (G) = {0, 1, 2, . . . , n − 1}. Since, t ≥ 4, |W | ≥ t + 1 = 4 + 1 = 5,
by Proposition 1.5.
Case 1. There is a vertex v1 ∈ W such that v1 /∈ [i]t.

Since v1 /∈ [i]t, u, v, w are neither v1 nor the opposite vertex of v1. Therefore,
x ∈ {u, v, w} then x ∈ L(v1) or x ∈ R(v1). So two of the vertices in {u, v, w}, must be
on the same side (right or left) of v1. Therefore, |W | ≥ t + 2 by Lemma 2.2.
Case 2. w ∈ W implies w ∈ [i]t.

Let V1 = {a, b, c, d, e} be a set of five vertices in W . We know, at most one vertex
from V1 can be the opposite vertex of a. Therefore, there are at least 3 vertices in V1
which are neither a nor an opposite vertex of a. Assume, without loss of generality,
that {b, c, d} are such vertices. Now, x ∈ {b, c, d} then x ∈ L(a) or x ∈ R(a). So two
of the vertices in {b, c, d}, must be on the same side (right or left) of a. Therefore,
|W | ≥ t + 2 by Lemma 2.2.

The next lemma applies when two vertices of a resolving set for Cn(1, 2, . . . , t) with
indices from consecutive congruence classes modulo t lie on opposite sides (left and
right) of another resolving vertex w.
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Lemma 2.4. Let a graph G = Cn(1, 2, . . . , t) where n = 2kt+2t. If W is the resolving
set containing two vertices u ∈ [i]t, v ∈ [i + 1]t and a vertex w ∈ W such that u ∈ R(w)
and v ∈ L(w), then |W | ≥ t + 2.

Proof. Let V (G) = {0, 1, 2, . . . , n − 1}.
Case 1. u ∈ [w]t.

Since u ∈ R(w), vertex u is neither w nor the opposite vertex of w. We know,
u ∈ [w]t = [w + kt]t. Now u does not resolve any pair of vertices in V1 = {w + kt +
1, w + kt + 2, . . . , w + kt + t} (where vertices in V1 are taken modulo n). Similarly,
since v ∈ L(w) and w + kt + t + 1 ∈ [w + 1]t = [i + 1]t, v does not resolve any pair of
vertices in V1. Additionally, V1 ⊆ Nk+1(w) so w does not resolve any pair of vertices
in V1. Hence, W\{u, v, w} must distinguish V1. Therefore, |W\{u, v, w}| ≥ t − 1 by
Lemma 1.7. Finally,

|W | = |W\{u, v, w}| + |{u, v, w}| ≥ t − 1 + 3 = t + 2.

Case 2. u /∈ [w]t.
We know [w + kt + 1]t, [w + kt + 2]t, . . . , [w + kt + t]t are all the congruence classes

modulo t. Since u is not in [w]t = [w + kt + t]t, it must be in one of [w + kt + j]t where
1 ≤ j ≤ t − 1. Now let

V1 = {w + kt + j + 1, w + kt + j + 2, . . . , w + kt + j + t}.

Since j ≤ t − 1,

w + kt + j + t ≤ w + kt + t − 1 + t = w + kt + 2t − 1.

Therefore, V1 ⊆ Nk+1(w). Similarly, since v ∈ L(w) and w + kt + j + t + 1 ∈ [i + 1]t,
v does not resolve any pair of vertices in V1. Additionally, V1 ⊆ Nk+1(w) so w does not
resolve any pair of vertices in V1. Hence, W\{u, v, w} must distinguish V1. Therefore,
|W\{u, v, w}| ≥ t − 1 by Lemma 1.7. Finally, we observe that

|W | = |W\{u, v, w}| + |{u, v, w}| ≥ t − 1 + 3 = t + 2.

The next result applies when two vertices of a resolving set for Cn(1, 2, . . . , t) are
at distance at most t − 2 from each other on the outer cycle C. We let dC(u, v) denote
the distance between u and v on the outer cycle C.

Lemma 2.5. Let n = 2tk + 2t. If W is the resolving set for G = Cn(1, 2, . . . , t)
containing two vertices u, v ∈ W such that dC(u, v) ≤ t − 2, then |W | ≥ t + 2.

Proof. Since |Nk+1(u)| = 2t − 1 and dC(u, v) ≤ t − 2, |Nk+1(u) ∩ Nk+1(v)| ≥ t + 1.
Let V1 be formed by taking t + 1 consecutive vertices from Nk+1(u) ∩ Nk+1(v). Now
neither u nor v resolves any pair of vertices in V1, hence W\{u, v} must distinguish V1.
Therefore, |W\{u, v}| ≥ t by Lemma 2.1. Therefore,

|W | = |W\{u, v}| + |{u, v}| ≥ t + 2.
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Our last lemma applies when a resolving set for Cn(1, 2, . . . , t) contains no vertices
with indices from a given congruence class modulo t.

Lemma 2.6. Let G = Cn(1, 2, . . . , t) where n = 2kt + 2t and t ≥ 4. If W is the
resolving set that does not contain any vertex from some congruence class [i]t, then W
must have at least two vertices from congruence class [i − 1]t and at least two vertices
from congruence class [i + 1]t. Furthermore, if W contains exactly two vertices of
congruence class [i − 1]t (or [i + 1]t) then they should be opposite vertices.

Proof. Let V (G) = {0, 1, 2, . . . , n−1}. Since W is a resolving set, it must have a vertex
to resolve vertex pairs (i−1, i) and (i+ n

2 −1, i+ n
2 ) (where vertices are taken modulo n).

Notice that only vertex in congruence class [i − 1]t or [i]t can resolve pairs (i − 1, i)
and (i + n

2 − 1, i + n
2 ). However, W does not have any vertex of congruence class [i]t

therefore W must have a vertex of congruence class [i − 1]t. Let a ∈ W be the vertex
that resolves the pair (i − 1, i), then a must be in L(i). However, since a ∈ R(i + n

2 ),
a does not resolve the pair (i + n

2 − 1, i + n
2 ) so W must have another vertex, say b, in

congruence class [i − 1]t to resolve the pair (i + n
2 − 1, i + n

2 ). Therefore, W has at
least 2 vertex from congruence class [i − 1]t. Now, using the same argument as above
on vertex pairs (i, i + 1) and (i + n

2 , i + n
2 + 1) (where vertices are taken modulo n) we

can show that W has at least 2 vertices of congruence class [i + 1]t.
Now we will prove if W contains exactly 2 vertices from congruence class [i − 1]t

(or [i + 1]t) then they should be opposite vertex. Assume a and b are the only vertex
of congruence class [i − 1]t in W . Assume, for the sake of contradiction, that a and b
are not opposite. Then either b ∈ R(a) or b ∈ L(a). Assume, without loss of generality,
that b ∈ R(a). Since a and b are in the same congruence class and are not opposite,
dC(a, b) = b − a mod n ≤ kt. Now b + 1 − a mod n ≤ kt + 1 < kt + t for t ≥ 4.
Therefore, b + 1 − a(mod n) < kt + t = n

2 . Hence, vertex b + 1 ∈ R(a). Consequently,
a ∈ L(b + 1). Clearly, b ∈ L(b + 1). We know the vertex in W that can resolve the pair
(b + n

2 , b + n
2 + 1) must be in R(b + 1) and congruence class [i − 1]t, as W does not

contain a vertex from congruence class [i]t. Therefore, neither a nor b resolves the pair
(b + n

2 , b + n
2 + 1), contradicting the fact that W is a resolving set for G. Therefore,

a and b must be opposite. We can use a similar argument for the [i + 1]t case.

3. PROOF OF THE MAIN RESULT

Theorem 3.1. Let a graph G = Cn(1, 2, . . . , t) where n = 2kt + 2t, t ≥ 4 and k ≥ 1,
then dim(G) ≥ t + 2.

Proof. Let V (G) = {0, 1, 2, . . . , n − 1} and W be any resolving set of G.
Case 1. W contains vertices from each congruence class modulo t.

Assume, for the sake of contradiction, that |W | = t + 1. Then W must have two
vertices from the same congruence class modulo t. Let u, v ∈ [i]t be vertices in W that
are in the same congruence class modulo t. From the case we are in there must be
exactly one vertex from each congruence class [i + j]t where 1 ≤ j ≤ t − 1. Let us
define vj be the vertex in W that is in congruence class [i + j]t, for 1 ≤ j ≤ t − 1.



48 Tapendra BC and Shonda Dueck

Since vj /∈ [i]t, vj can neither be u nor the opposite vertex of u. Similarly, vj is neither
v nor the opposite vertex of v. Therefore, each vj is in R(u) or L(u). Similarly, each
vj is in R(v) or L(v). Now we will prove that every vj lies on the shortest u − v path
in the outer cycle of G.
Subcase 1.1. dC(u, v) = n

2 .
In this case, there are two shortest paths from u to v of length n

2 in the outer cycle
of G. Now, either v1 ∈ R(u) or v1 ∈ L(u). Assume, without loss of generality, that
v1 ∈ R(u). (Note that if v1 ∈ L(u), then v1 ∈ R(v), so we can switch the names of u
and v.) Since v2 ∈ [i + 2]t = [v1 + 1]t, v2 must be in R(u); otherwise |W | ≥ t + 2 by
Lemma 2.4, which is a contradiction. Now, since v3 ∈ [i + 3]t = [v2 + 1]t, v3 must be
in R(u). Inductively, we must have v4, v5, . . . , vt−1 ∈ R(u). Therefore, every vj lies on
R(u) which is in one of the shortest u − v paths in the outer cycle of G.
Subcase 1.2. dC(u, v) < n

2 .
In this case, there is a unique shortest path from u to v in the outer cycle of G. In

the case we are in, the vertex v is neither u nor the opposite vertex of u, therefore
either v ∈ L(u) or v ∈ R(u). Assume, without loss of generality, that v ∈ R(u). (Note
that if v ∈ L(u), then u ∈ R(v), so we can switch the names of u and v.) Since
v1 ∈ [i + 1]t = [v + 1]t, v1 must be in R(u); otherwise |W | ≥ t + 2 by Lemma 2.4,
which is a contradiction. Now, since v2 ∈ [i + 2]t = [v1 + 1]t, v2 must be in R(u).
Inductively, we must have v4, v5, . . . , vt−1 ∈ R(u). Therefore, every vj lies on R(u).
Additionally, since v ∈ R(u), u ∈ L(v). Since u ∈ [i]t = [vt−1 + 1]t, vt−1 must be
in L(v); otherwise |W | ≥ t + 2 by Lemma 2.4, which is a contradiction. Now, since
vt−1 ∈ [i + t − 1]t = [vt−2 + 1]t, vt−2 must be in L(v). Inductively, we must have
vt−3, vt−4, . . . , v1 ∈ L(v). Therefore, all vj are in R(u) ∩ L(v) which is in the shortest
path between u and v in the outer cycle C of G.

Now, since every vj lies on the shortest path between u and v in the outer cycle of
G, u ∈ L(vj) and v ∈ R(vj). If there is any vj between v1 and v in the outer cycle of G,
then v ∈ R(vj) and v1 ∈ L(vj), so |W | ≥ t + 2 by Lemma 2.4, which is a contradiction.
Therefore, all vj other than v1 must lie between u and v1 in the outer cycle of G.
Now v2 lies between u and v1. If any vj lies between v1 and v2, then v1 ∈ R(vj) and
v2 ∈ L(vj), so |W | ≥ t + 2 by Lemma 2.4, which is a contradiction. Therefore, all
vj other than v1 and v2 must lie between u and v2. By induction, we can see that
vj−1 ∈ R(vj) and vj+1 ∈ L(vj) for all 1 ≤ j ≤ t − 1 (see Figure 2).

Now, vertex v2 does not resolve its neighbours (v2 − 1, v2 + 1)(where vertices are
taken modulo n). Since t ≥ 4, {v1, v2, v3} ⊆ {vj : 1 ≤ j ≤ t − 1} (as defined above).
Therefore, W does not have another vertex in the same congruence class as v2. Now,
the pair (v2 − 1, v2 + 1) is either resolved some vertex x such that x ∈ L(v2) and
x ∈ [v1] or x ∈ R(v2) and x ∈ [v3]. However, we do not have such vertex x in W .
Therefore, W is not a resolving set of G, which is a contradiction. Hence, G does not
have a resolving set of cardinality t+1. Therefore, dim(G) ≥ t + 2.
Case 2. W does not contain vertices from some congruence class [i]t.

In this case, W has at least 2 vertex of congruence class [i − 1]t and at least 2
vertex of congruence class [i + 1]t by Lemma 2.3. If W has three or more vertex of
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congruence class [i − 1]t or [i + 1]t then |W | ≥ t + 2 by Lemma 2.3. Now, let us assume
that W has exactly two vertex from each congruence class [i − 1]t and [i + 1]t. Let
a, b be vertex in W that are in congruence class [i − 1]t and c, d be vertex in W that
are in congruence class [i+]t. By Lemma 2.6, a and b must be opposite, and c and
d must be opposite. Now, a does not resolve the pair (a − 1, a + 1) (where vertices
are taken modulo n). Similarly, b does not resolve (a − 1, a + 1) because both a − 1
and a + 1 are in Nk+1(b). Now, the vertex that resolves the pair (a − 1, a + 1) either
is in congruence class [i − 2]t or [i]t. However, W does not contain any vertex from
congruence class [i]t, so W must have some vertex from congruence class [i − 2]t. Let
x be the vertex in W that is in congruence class [i − 2]t. Since t ≥ 4 congruence
classes [i − 2]t, [i − 1]t, [i]t, [i + 1]t are distinct. Therefore, x ̸= c and x ̸= d. Now either
x ∈ L(c) = R(d) or x ∈ R(c) = L(d). Similarly, a ∈ L(c)ora ∈ R(c). Assume, without
loss of generality, that a ∈ L(c) = R(d), then b ∈ R(c) = L(d). If x ∈ L(c) = R(d)
then we know b ∈ L(d) and b ∈ [x + 1]t. Therefore, by Lemma 2.4 |W | ≥ t + 2. On
the other hand, if x ∈ R(c) = L(d), then we know a ∈ L(c) = R(d) and a ∈ [x + 1]t.
Therefore, by Lemma 2.4, |W | ≥ t + 2.
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Fig. 2. Orientation of vj (1 ≤ j ≤ t)
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