Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an analysis of the cooling performance of a microchannel beam heat exchanger powered by the combustible refrigerant R290 (propane) as a function of design parameters. R290 is an environmentally friendly refrigerant, in the context of growing concerns about climate change and the need for sustainable cooling solutions. Propane characterized by low global warming potential (GWP=3) and zero ozone depletion potential (ODP=0). The studied heat exchanger is dedicated to refrigeration devices where waste heat from mechanical ventilation installations serves as the lower heat source. Performance analyses of the exchanger operating as a condenser in the refrigeration system were conducted based on its design parameters. Several design variations of the exchanger were examined, including different microchannel shapes. Simulation studies were also performed under various operating conditions. The mass flow rate of the refrigerant in the exchanger and the volumetric flow rate of ventilation air were varied. The aim of the conducted research was to reduce the dimensions of the heat exchanger, enabling a reduction in the mass of the combustible refrigerant in the exchanger. Simulation studies were conducted using SolidWorks software with the Flow Simulation library. Over 500 simulations were performed. Based on the obtained results, it was found that using hexagon-shaped or triangle-shaped microchannels with corrugated walls could double the heat transfer rate of the condenser compared to the commonly used square or circular channels.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
151--162
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
autor
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
autor
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
Bibliografia
- 1. Regulation (EU) 2024/573 of the European Parliament and of the Council of 7 February 2024 on fluorinated greenhouse gases, amending Directive (EU) 2019/1937 and repealing Regulation (EU) No 517/2014.
- 2. IEC 60335-2-89 Household and similar electrical appliances - Safety - Part 2-89: Particular requirements for commercial refrigerating appliances and ice-makers with an incorporated or remote refrigerant unit or motor-compressor.
- 3. IEC 60335-2-40 Household and similar electrical appliances - Safety - Part 2-40: Particular requirements for electrical heat pumps, air-conditioners and dehumidifiers.
- 4. Regulation of the Minister of Infrastructure on the technical conditions to be met by buildings and their location (Dz.U. /Journal of Laws/ of 2022, item 122).
- 5. EN 12831 Energy performance of buildings - Method for calculation of the design heat load.
- 6. Mba, E. J., Okeke, F. O., Ezema, E. C., Oforji, P. I., & Ozigbo, C. A. Post-occupancy evaluation of ventilation coefficient desired for thermal comfort in educational facilities. Journal of Human, Earth, and Future, 2023, 4(1), 88–102.
- 7. Chua, K. J., Chou, S. K., & Yang, W. M. Advances in heat pump systems: A review. Applied Energy, 2010, 87(12), 3611–3624.
- 8. Cavallini, A., Da Riva, E., & Del Col, D. Performance of a large capacity propane heat pump with low charge heat exchangers. International Journal of Refrigeration, 2010, 33(2), 242–250.
- 9. Fernando, P., Palm, B., Lundqvist, P., & Granryd, E. Propane heat pump with low refrigerant charge: design and laboratory tests. International Journal of Refrigeration, 2004, 27(7), 761–773.
- 10. Tammaro, M., Montagud, C., Corberán, J. M., Mauro, A. W., & Mastrullo, R. I. T. A. Seasonal performance assessment of sanitary hot water production systems using propane and CO2 heat pumps. International Journal of Refrigeration, 2017, 74, 224–239.
- 11. Allahyarzadeh-Bidgoli, A., Dezan, D. J., & Yanagihara, J. I. COP optimization of propane pre-cooling cycle by optimal Fin design of heat exchangers: Efficiency and sustainability improvement. Journal of Cleaner Production, 2020, 271, 122585.
- 12. Muliawan, R., Pasek, A. D., Lukitobudi, A. R., & Sutandi, T. Effect of leakage on refrigerant distribution in an air-conditioned room using propane as working fluid. In IOP Conference Series: Materials Science and Engineering, 2020, April, 830(4), 042023. IOP Publishing.
- 13. Tang, W., He, G., Cai, D., Zhu, Y., Zhang, A., & Tian, Q. The experimental investigation of refrigerant distribution and leaking characteristics of R290 in split-type household air conditioner. Applied Thermal Engineering, 2017, 115, 72–80.
- 14. Qiu, G., Li, M., & Cai, W. The effect of inclined angle on flow, heat transfer and refrigerant charge of R290 condensation in a minichannel. International Journal of Heat and Mass Transfer, 2020, 154, 119652.
- 15. Zhou, W., & Gan, Z. A potential approach for reducing the R290 charge in air conditioners and heat pumps. International Journal of Refrigeration, 2019.
- 16. Du, Y., Wu, J., & Che, W. Experimental study on dynamic characteristics of an R290 heat pump during defrost. Energy and Buildings, 2020.
- 17. Choudhari, C. S., & Sapali, S. N. Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems. Energy Procedia, 2017, 109, 346–352.
- 18. Devotta, S., Padalkar, A. S., & Sane, N. K. Performance assessment of HC-290 as a drop-in substitute to HCFC-22 in a window air conditioner. International Journal of Refrigeration, 2005, 28(4), 594–604.
- 19. Teng, T. P., Mo, H. E., Lin, H., Tseng, Y. H., Liu, R. H., & Long, Y. F. Retrofit assessment of window air conditioner. Applied Thermal Engineering, 2012, 32, 100–107.
- 20. Zhang, W., Yang, Z., Zhang, X., Lv, D., & Jiang, N. Experimental research on the explosion characteristics in the indoor and outdoor units of a split air conditioner using the R290 refrigerant. International Journal of Refrigeration, 2016, 67, 408–417.
- 21. Nawaz, K., Shen, B., Elatar, A., Baxter, V., & Abdelaziz, O. R290 (propane) and R600a (isobutane) as natural refrigerants for residential heat pump water heaters. Applied Thermal Engineering, 2017, 127, 870–883.
- 22. Kwon, S., Lee, D., Chung, J. Y., Maeng, H., & Kim, Y. Performance comparison of a direct heat pump using R1234yf and indirect heat pumps using R1234yf and R290 designed for cabin heating of electric vehicles. Energy, 2024, 297, 131311.
- 23. Sánchez, D., Cabello, R., Llopis, R., Arauzo, I., Catalán-Gil, J., & Torrella, E. Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290, and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 2017, 74, 269–282.
- 24. Choma, A., Obstawski, P. M. Analysis of efficiency of finned heat exchanger fed with synthetic and natural refrigerant. Advances in Science and Technology Research Journal, 2024, 18(5).
- 25. Schnabel, L., Dankwerth, C., Methler, T., Schossig, P., Fraunhofer-Institute for Solar Energy Systems - ISE, CHILLVENTA eSPECIAL 13.-15.10.2020. Conference materials.
- 26. Han, Y., Liu, Y., Li, M., & Huang, J. A review of development of micro-channel heat exchanger applied in air-conditioning system. Energy Procedia, 2012, 14, 148–153.
- 27. Śmierciew, K. Wybrane zagadnienia cieplno-przepływowe urządzeń stosowanych w technice chłodniczej i cieplnej w ujęciu numerycznym i eksperymentalnym. Oficyna Wydawnicza Politechniki Białostockiej, 2018.
- 28. Denkenberger, D. C., Brandemuehl, M. J., Pearce, J. M., & Zhai, J. Expanded microchannel heat exchanger: design, fabrication, and preliminary experimental test. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(4), 532–544.
- 29. Deng, Y., Menon, S., Lavrich, Z., Wang, H., & Hagen, C. L. Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications. Applied Thermal Engineering, 2017, 110, 327–334.
- 30. McLellan, J. Modelling and Optimization Methods for a Microchannel Heat Exchanger (Doctoral dissertation, Carleton University), 2015.
- 31. Kaczmarczyk, O., & Mikielewicz, J. Studium nad łączeniem mikro kanalikowych wymienników ciepła w wymiennik integralny. Rocznik Ochrona Środowiska, 2015, 17.
- 32. Foli, K., Okabe, T., Olhofer, M., Jin, Y., & Sendhoff, B. Optimization of micro heat exchanger: CFD, analytical approach, and multi-objective evolutionary algorithms. International Journal of Heat and Mass Transfer, 2006, 49, 1090–1099.
- 33. Oforji, P. I., Mba, E. J., & Okeke, F. O. The effects of rhythm on building openings and fenestrations on airflow pattern in tropical low-rise residential buildings. Civil Engineering Journal, 2023, 9(8), 2062–2084.
- 34. Ulum, M. S., Arminda, W., Kamaruddin, M., & Satria, W. D. Ventilation performance of air duct in double-loaded corridor building: A case study. Civil Engineering Journal, 2023, 9(10), 2445–2455.
- 35. Kadhim, D. S., Assi, S. A., Aziz, J. S., & Nadeem, Z. A. CFD analysis procedure and genetic algorithm application for evaluating performance of double pipe heat exchanger. Advances in Science and Technology Research Journal.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d0fa7ad-599a-4fdf-8835-712afd91fb28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.