Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Powłoki kompozytowe nikiel-grafen
Języki publikacji
Abstrakty
The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed the important role of graphene in the increased wear resistance of these coatings. A Watts type nickel plating bath with a low concentration of nickel ions, organic addition agents and graphene as dispersed particles was used for deposition of the composite nickel-graphene coatings. The particle contents in the coatings, surface morphology, roughness and microhardness of the coatings were measured. An Amsler testing machine with a block - ring system was used for tribological tests with Lux oil lubrication. The obtained results suggest that the content of incorporated graphen particles increases with an increasing amount of graphen in the plating bath. The application of organic compounds was advantageous. The nickel-graphene coatings produced during the investigation were distinguished by much better tribological properties than the nickel coating. The tested composite coatings had a relative wear resistance from 3.7 to 6.9 times higher in relation to the relative wear resistance of a nickel coating.
Prace badawcze nad zastosowaniem grafenu do elektroosadzania niklowych powłok kompozytowych były pierwszą próbą wykorzystania i oceny zalet tego materiału w niklowych powłokach kompozytowych pod kątem wzrostu ich odporności na zużycie przez tarcie. W pracy do osadzania powłok kompozytowych nikiel-grafen użyto kąpieli typu Wattsa z obniżonym stężeniem jonów niklu, dodatków organicznych i grafenu jako cząstki dyspersyjne. Przedstawiono wyniki badań dla powłok nikiel-grafen wytwarzanych z kąpieli o zawartości grafenu 0,33 i 0,5 g/dm3oraz w obecności dwóch różnych związków powierzchniowoczynnych. Badano zawartość cząstek w powłokach, morfologię powierzchni, chropowatość i mikrotwardość powłok. Badania tribologiczne wykonano w warunkach tarcia ze smarowaniem na maszynie Amslera. Otrzymane wyniki sugerują, że ilość wbudowanych cząstek grafenu wzrasta ze wzrostem zawartości grafenu w kąpieli. Zastosowanie badanych związków organicznych było korzystne. Kompozytowe powłoki nikiel-grafen wytworzone w tych badaniach odznaczały się znacznie lepszymi właściwościami tribologicznymi od powłoki niklowej. Badane powłoki kompozytowe miały względną odporność na zużycie od 3,7 do 6,9 razy większą od względnej odporności na zużycie powłoki niklowej.
Czasopismo
Rocznik
Tom
Strony
107--111
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Institute of Precision Mechanics, ul. Duchnicka 3, 01-796 Warsaw, Poland
autor
- Institute of Precision Mechanics, ul. Duchnicka 3, 01-796 Warsaw, Poland
Bibliografia
- [1] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric field effect in automatically thin carbon films, Science 2004, 306, 666-669.
- [2] Geim A.K., Novoselov K.S., The rise of graphene, Nature Materials 2007, 6, 183-191.
- [3] Gilje S., Han S., Wang M., Wang K.L., Kaner R.B., A chemical route to graphene for device applications, Nano Lett. 2007, 7, 3394-3398.
- [4] Allen M.J., Tung V.C., Kaner R.B., Honeycomb carbon: A review of graphene, Chem. Rev. 2010, 110, 132-145.
- [5] Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S., Graphene based materials: Past, present and future, Progress in Materials Science 2011, 56, 1178-1271.
- [6] Forbeaux I., Themlin J.M., Debever J.M., Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction band electronic structure, Phys. Rev. B 1998, 58, 16396-16406.
- [7] Land T.A., Michely T., Behm R.J., Hemminger J.C., Comsa G., STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition, Surf Sci 1992, 264, 261-270.
- [8] Krishnamoorthy K., Kim G.-S., Kim S.J., Graphene nanosheets: Ultrasound assisted synthesis and characterization, Ultrasonics Sonochemistry 2013, 20, 644-649.
- [9] Jin Y., Jia M., Zhang M., Wen Q., Preparation of stable aqueous dispersion of graphene nanosheets and their electrochemical capacitive properties, Appl. Surf. Sci. 2013, 264, 787-793.
- [10] Krishnan A., Dujardin E., Treacy M.M.J., Hugdahl J., Lynum S., Ebbesen T.W., Graphitic cones and the nucleation of curved carbon surfaces, Nature 1997, 388, 451-454.
- [11] Somani P.R., Somani S.P., Umeno M., Planer nano-graphenes from camphor by CVD, Chem. Phys. Lett. 2006, 430, 56-59.
- [12] Cao H., Yu Q., Colby R., Pandey D., Park C.S., Lian J. et al., Large-scale graphitic thin films synthesized on Ni and transferred to insulators. Structural and electronic properties, J. Appl. Phys. 2010, 107, 044310-1-044310-7.
- [13] Wang J.J., Zhu M.Y., Outlaw R.A., Zhao X., Manos D.M., Holoway B.C., Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition, Carbon 2004, 42, 2867-2872.
- [14] Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S., The chemistry of graphene oxide, Chem. Soc. Rev. 2010, 39, 228-240.
- [15] Kim J., Cotr L.J., Kim F., Yuan W., Shull K.R., Huang J., Graphene oxide sheets at interfaces, J. Am. Chem. Soc. 2010, 132, 8180-8186.
- [16] Levy N., Burke S.A., Meaker K.L., Panlasigui M., Zettl A., Guinea F., Castro Neto A.H., Crommie M.F., Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles, Science 2010, 329, 544-547.
- [17] Zhang L.L., Zhou R., Zhao X.S., Graphene-based materials as supercapacitor electrodes, Journal of Materials Chemistry 2010, 20, 5983-5992.
- [18] Yoo E.J., Kim J., Hosono E., Zhou H.S., Kudo T., Honma I., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Letters 2008, 8, 2277-2282.
- [19] Qu L., Liu Y., Baek J.B., Dai L., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 2010, 4, 1321-1326.
- [20] Szeptycka B., Gajewska A., The structural and tribological properties of nanocrystalline electrochemical coatings with nickel matrix, Solid State Phenomena 2003, 94, 245-248.
- [21] Szeptycka B., Gajewska-Midziałek A., Investigations of the wear resistance of composite coatings Ni-SiC, Kompozyty 2005, 5, 2-7.
- [22] Gajewska-Midziałek A., Szeptycka B., Derewnicka D., Nakonieczny A., Wear resistance of nanocrystalline composite coatings, Tribology International 2006, 39 (8), 763-768.
- [23] Szeptycka B., The nano-structured Ni-SiC coatings and their tribological properties, Engineering & Automation Problems, (Problemy maszinostrojenija i avtomatizacji) 2010, 2, 117-120.
- [24] Gostomska M., Trzaska M., Preparation and properties of the Ni-P/CNTs composite surface layers produced by chemical reduction method, Composites Theory and Practice 2013, 13 (1), 3-6.
- [25] Jeon Y.S., Byun J.Y., Oh T.S., Electrodeposition and mechanical properties of Ni-carbon nanotube nanocomposite coatings, Journal of Physics and Chemistry of Solids 2008, 69, 1391-1394.
- [26] Berman D., Erdemir A., Sumant A.V., Few layer graphene to reduce wear and friction on sliding steel surfaces, Carbon 2013, 54, 454-459.
- [27] Kuang D., Xu L., Liu L., Hu W., Wu Y., Graphene-nickel composites, Appl. Surf. Sci. 2013, 273, 484-490.
- [28] Kumar P.C.M., Venkatesha T.V., Shabadi R., Preparation and corrosion behavior of Ni and Ni-graphene composite coatings, Mat. Res. Bull. 2013, 48, 1477-1483.
- [29] Wang D., Yan W., Vijapur S.H., Botte G.G., Electrochemically reduced graphene oxide-nickel nanocomposites for urea electrolysis, Electrochimica Acta 2013, 89, 732-736.
- [30] Hummers Jr. W.S., Offeman R.E., Preparation of graphitic oxide, Journal of the American Chemical Society 1958, 80, 1339.
- [31] Wang D., Hasin Y. Li, P., Wu Y., Preparation, characterization, and electrocatalitic performance of graphene-methylene blue thin films, Nano Research 2011, 4, 124.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d0d3db5-a371-410b-af47-020bf513eed8