PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural testing of carbon FLP composite bars with annular and square cross section

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Decrease of vehicle emissions require design changes already at the initial concept design. Use of fiber reinforced polymer (FRP) composites in design cause reduction of weight with increasing other properties. Paper presents the case study of proposal material for frame concept of special light vehicle design. The flexural test (basically three-point bending test) of carbon fiber reinforced polymer composite bars with annular and square cross section is presented. Experimental results were verified by numerical simulation finite element method (FEM). The permanent deformation of bar with annular cross section occurred at a force 2 280 N with deflection 4.22 mm. Model numerical simulation by FEM show same course of loading. For bar with square cross section the deformation occurred at a force 2 264 N, with deflection 7 mm. Model numerical simulation by FEM show different trend (under force 2264 N the deflection was 3.4 mm). The research was supported by the Slovak Research and Development Agency under the contract no. APVV-18-0457, Special Light Electric Vehicle from Unconventional Materials to Heavy Conditions and Terrain - LEV.
Rocznik
Strony
138--143
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Slovakia
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Slovakia
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Slovakia
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Slovakia
Bibliografia
  • 1.Ashby, M.,F., 2005. Materials Selection in Mechanical Design, Elsevier Butterworth Heinemann. Burlington.
  • 2.Benko, M., 2020. Výskum možností využitia ľahkých kompozitných materiálov v konštrukcii nekonvenčných dopravných prostriedkov, Dissertation work, University of Žilina Faculty of Mechanical Engeneering, Department of Design and Mechanical Elements.
  • 3.Choi, N.S., Kinloch, A.J., Williams, J.G., 1999. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loading, Journal of Composite Materials, 33(1), 73-100, DOI: 10.1177/002199839903300105.
  • 4.Czapski, P., 2020. Influence of laminate code and curing process on the stability of square cross section, composite columns - Experimental and FEM studies, Composite Structure, 250, 112564, DOI: 10.1016/j.compstruct.2020.112564.
  • 5.Grand View Research, 2017. Fiber Reinforced Polymer (FRP) Composites Market Analysis By Fiber Type (Glass, Carbon, Basalt, Aramid), By Application (Automotive, Construction, Electronic, Defense), By Region, And Segment Forecasts, 2018 - 2025. Report ID: GVR-2-68038-006-4. https://www.grandviewresearch.com/industry-analysis/fiberreinforced-polymer-frp-composites-market.
  • 6.Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M., 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B, Engineering, 42, 4, 856-873, DOI: 10.1016/j.compositesb.2011.01.010.
  • 7.Liptáková, T., Alexy, P., Gondár, E., Khunová V., 2012. Polymérne konštrukčné materiály, EDIS, Žilina.
  • 8.Martin, J., 2020. Methyl methacrylate (MMA) adhesives - A trending procedure in the marine industry, Reinforced Plastics 64, 4, 204-207, DOI: 10.1016/j.repl.2019.10.006
  • 9.Miracle, D.B., Donaldson, S.L., 2001. ASTM Handbook, Composites, 21, ASTM International, USA.
  • 10.Petrů, M., Novák, O., 2017. FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites, IntechOpen Limited London, DOI: 10.5772/intechopen.71881.
  • 11.Sadeghian, R., Gangireddy, S., Minaie, B., Kuang-Ting Hsiao, 2006. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance, Composites part A: Applied Science and Manufacturing, 37, 10, 1787-1795, DOI: 10.1016/j.compositesa.2005.09. 010.
  • 12.Sohn, M., S., Hu, X., Z., 1994. Mode II delamination toughness of carbonfibre/epoxy composites with chopped Kevlar fiber reinforcement. Composites Science and Technology, 52, 3, 439-448, DOI: 10.1016/0266-3538(94)90179-1.
  • 13.Tekalur, S.A., Shivakumar, K., Shukla, A., 2008. Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads, Composites Part B: Engineering, 39, 1, 57- 65, DOI: 10.1016/j.compositesb.2007.02.020.
  • 14.Wonderly, CH., Grenestedt, J., Fernlund, G.E. Cepuš, 2005. Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites, Composites Part B: Engineering, 36, 5, 417-426, DOI: 10.1016/j.compositesb.2005.01.004.
  • 15.Wang, Q., Li, t., Wang, B., Liu, C., Huang, Q., Ren, M., 2020. Prediction of void growth and fiber volume fraction based on filament winding process mechanics, Composites, 246, 15, 112432, DOI: 10.1016/j.compstruct.2020.112432
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d0d0979-3c61-4165-ae76-badf92371f3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.