PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Increasing productivity of cutting processes by real-time compensation of tool deflection due to process forces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Internet of Production (IoP) describes a vision in which a broad range of different production data is available in real-time. Based on this data, for example, new control types can be implemented, which improve individual manufacturing processes directly at the machine. A possible application scenario is a tool deflection compensation. Although the problem of tool deflection is well known in the industrial field, a process-parallel compensation is not common in industrial applications. State-of-the-art solutions require time and cost consuming tests to determine necessary cutting parameters. An NC-integrated compensation that adapts the tool path in real-time will make these tests obsolete and furthermore enables higher chip removal rates. In this paper, a control-internal real-time compensation of tool deflection is described, which is based on a process-parallel measurement of process forces. The compensation software is designed as an extension to the NC kernel and thereby integrated into the position control loop of an in-series NC. The compensation movements are generated by manipulating the reference values of the feed axes. The approach is investigated by experiments with linear axis movements. During these tests, a significantly reduction of geometrical machining errors is possible.
Rocznik
Strony
16--27
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
  • Laboratory of Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany
autor
  • Laboratory of Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany
  • Laboratory of Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany
  • Laboratory of Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany
Bibliografia
  • [1] HABIBI M., AREZOO B., VAHEBI NOJEDEH M., 2011, Tool deflection and geometrical error compensation by tool path modification, International Journal of Machine Tools and Manufacture, 51/6, 439–449.
  • [2] MA W., HE G., ZHU L., GUO L., 2015, Tool deflection error compensation in five-axis ball-end milling of sculptured surface, The International Journal of Advanced Manufacturing Technology, 47/2, 352.
  • [3] DENKENA B., DAHLMANN D., BOUJNAH H., 2017, Tool Deflection Control by a Sensory Spindle Slide for Milling Machine Tools, Procedia CIRP, 62, 329–334.
  • [4] DENKENA B., MÖHRING H., WILL J., 2007, Tool deflection compensation with an adaptronic milling spindle, International Conference on Smart Machining Systems (ICSMS'07), Gaithersburg, MD.
  • [5] YANG M., CHOI J., 1998, A Tool Deflection Compensation System for End Milling Accuracy Improvement, Journal of Manufacturing Science and Engineering, 120/2, 222.
  • [6] WATANABE T., IWAI S., 1983, A Control System to Improve the Accuracy of Finished Surfaces in Milling, Journal of Dynamic Systems, Measurement, and Control, 105/3, 192.
  • [7] PRITSCHOW G., KORAJDA B., FRANITZA T., 2004, NC-Steuerung kompensiert Werkzeugverbiegung, TECHNICA, 53/18, 10–15.
  • [8] DENKENA B., DAHLMANN D., PETERS R., WITT M., 2017, Model based compensation of geometrical deviations due to process forces, Journal of Machine Engineering, 17/1, 5–16.
  • [9] BRECHER C., EPPLE A., FEY M., KÖNIGS M., NEUS S., WELLMANN F., 2017, Lernende Produktionssysteme, In: Internet of Production für agile Unternehmen. 135–195.
  • [10] BRECHER C., ECKEL H.-M., FEY M., BUTZ F., 2018, Prozesskraftmessung mit spindelintegrierter Sensorik, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 113/10, 660–663.
  • [11] SALGADO M., LÓPEZ DE LACALLE L., LAMIKIZ A., MUÑOA J., SÁNCHEZ J., 2005, Evaluation of the stiffness chain on the deflection of end-mills under cutting forces, International Journal of Machine Tools and Manufacture, 45/6, 727–739.
  • [12] PRITSCHOW G., KORAJDA B., FRANITZA T., 2004, NC-Steuerung kompensiert Werkzeugverbiegung, TECHNICA, 53/18, 10–15.
  • [13] BRECHER C., KÖNIGS M., 2018, Process-parallel virtual quality evaluation for metal cutting in series production, Procedia Manufacturing, 26, 1087–1093.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d0aca90-68f3-42d8-bc7f-841cad2ea8c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.