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Abstract. Let G be a graph and f : V (G) → P ({1, 2}) be a function where for every vertex
v ∈ V (G), with f(v) = ∅ we have

⋃
u∈NG(v) f(u) = {1, 2}. Then f is a 2-rainbow dominating

function or a 2RDF of G. The weight of f is ω(f) =
∑

v∈V (G) |f(v)|. The minimum weight
of all 2-rainbow dominating functions is 2-rainbow domination number of G, denoted by
γr2(G). Let G1 and G2 be two copies of a graph G with disjoint vertex sets V (G1) and V (G2),
and let σ be a function from V (G1) to V (G2). We define the functigraph C(G, σ) to be the
graph that has the vertex set V (C(G, σ)) = V (G1) ∪ V (G2), and the edge set E(C(G, σ)) =
E(G1) ∪E(G2) ∪ {uv;u ∈ V (G1), v ∈ V (G2), v = σ(u)}. In this paper, 2-rainbow domination
number of the functigraph of C(G, σ) and its complement are investigated. We obtain a general
bound for γr2(C(G, σ)) and we show that this bound is sharp.
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1. INTRODUCTION

Let G = (V (G), E(G)) be a simple, finite and undirected graph. The open neighborhood
of a vertex v ∈ V (G), denoted by NG(v), is the set of vertices adjacent to v in G.
The closed neighborhood of a vertex v is G is NG[v] = NG(v) ∪ {v}. The degree of
a vertex v ∈ V (G) is degG(v) =| NG(v) |. The maximum degree and minimum degree
are denoted by ∆(G) and δ(G), respectively. A vertex is called universal vertex if its
degree is |V (G)| − 1.

The complement of graph G is denoted by G is a graph with vertex set V (G) which
e ∈ E(G) if and only if e /∈ E(G). For any S ⊆ V (G), the induced subgraph on S,
denoted by G[S].

Let f : V (G) → P ({1, 2}) be a function where for every vertex v ∈ V (G), with
f(v) = ∅ we have

⋃
u∈NG(v) f(u) = {1, 2}. Then f is a 2-rainbow dominating function
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or a 2RDF of G. The weight of f is ω(f) =
∑
v∈V (G) |f(v)|. The minimum weight of

all 2-rainbow dominating functions is 2-rainbow domination number of G, denoted
by γr2(G).

Let G1 and G2 be two disjoint copies of graph G and σ : V (G1) → V (G2)
be a function, where V (G1) = {v1, v2, . . . , vn} and V (G2) = {u1, u2, . . . , un}. Then
a functigraph of G with function σ is denoted by C(G, σ), has vertex set

V (C(G, σ)) = V (G1) ∪ V (G2)

and edge set

E(C(G, σ)) = E(G1) ∪ E(G2) ∪ {vu; v ∈ V (G1), u ∈ V (G2), σ(v) = u}.

For u ∈ V (G2),
Ru = {v ∈ V (G1);σ(v) = u}

and for ` ∈ {0, 1, 2, . . . , n = |V (G)|}, we define

B` = {u ∈ V (G2); |Ru| = `}.

For simplicity the open neighbourhood of x in C(G, σ) (or in C(G, σ)) is denoted by
NC(x) (or NC(x)).

In recent years much attention drawn to the domination theory which is very
interesting branch in graph theory. Recently, the concept of domination expanded to
other parameters of domination such as signed domination, Roman domination and
rainbow domination. For more details see [3, 8, 12]. In [17], Wu and Xing obtained
sharp lower and upper bounds for γr2(G)+γr2(G). In 2013, Wu and Jafari Rad proved
that if G is a connected graph of order n ≥ 3, then γr2(G) ≤ 3n

4 (see [15]). In [16],
a conjecture was posted regarding generalized Peterson graphs and it was answered
in [9].

These motivated us to consider the 2-rainbow domination number of the functigraph
and its complement. For this aim we obtain a general bound of γr2(C(G, σ)) for any
graph G and we discuss the tightness of this bound. Also we investigate γr2(C(G, σ)).

2. PRELIMINARIES

For investigating the 2-rainbow domination number of functigraph, the following basic
properties are useful.

Lemma 2.1 ([4]). γr2(Pn) =
⌊n

2

⌋
+ 1.

Lemma 2.2 ([4]). For n ≥ 3, γr2(Cn) =
⌊n

2

⌋
+

⌈n
4

⌉
−

⌊n
4

⌋
.

Lemma 2.3. Let G be a graph of order n. Then γr2(G) = 1 if and only if n = 1.
Proof. If n = 1, then the proof is straightforward. Conversely, let n ≥ 2, γr2(G) = 1
and f be a 2RDF of G such that |f(v)| = 1 and f(x) = ∅ for every x ∈ V (G) \ {v}.
Then

⋃
y∈NG(x) f(y) 6= {1, 2}, where x ∈ V (G) \ {v}. This is impossible.
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Lemma 2.4. Let G be a graph and w be an universal vertex of G. Then γr2(G) = 2.
Proof. Let f : V (G)→ P ({1, 2}) be a function where f(w) = {1, 2} and f(x) = ∅, for
every x ∈ V (G) \ {w}. Then f is a 2RDF of G. Hence, γr2(G) ≤ 2. Since n ≥ 2, so
by Lemma 2.3, γr2(G) = 2.

Lemma 2.5. Let G be a graph of order n = 1. Then γr2(C(G, σ)) = γr2(C(G, σ)) = 2.
Proof. It is clear that if n = 1, then C(G, σ) ∼= P2. By Lemma 2.1, γr2(P2) = 2 and
so γr2(P2) = 2.

Lemma 2.6. For any graph G, 2 ≤ γr2(C(G, σ)) ≤ 5.
Proof. Let B1 6= ∅, u ∈ B1 and Ru = {v}. Also let g : V (C(G, σ)) → P ({1, 2})
be a function with g(u) = g(v) = {1, 2} and for every x ∈ V (G1) ∪ V (G2) \ {u, v},
g(x) = ∅. Then g is a 2RDF of C(G, σ). Hence, γr2(C(G, σ)) ≤ ω(g) = 4.

Let B1 = ∅. Then B0 6= ∅. Assume that u ∈ B0, v ∈ V (G1) and
let g : V (C(G, σ))→ P ({1, 2}) be a function such that g(u) = g(v) = {1, 2},
g(σ(v)) = {1} and for every x ∈ V (G1) ∪ V (G2) \ {u, v, σ(v)}, g(x) = ∅. Then
g is a 2RDF for C(G, σ). Therefore, γr2(C(G, σ)) ≤ ω(g) = 5. By Lemma 2.3,
γr2(C(G, σ)) ∈ {2, 3, 4, 5}.
Lemma 2.7. Let G be a graph and there is u ∈ V (G2) such that G[NG2(u)] has one
isolated vertex. Then γr2(C(G, σ)) ∈ {2, 3, 4}.
Proof. Let u0 ∈ V (G2) be an isolated vertex of G[NG2(u)]. Assume that
f : V (C(G, σ)) → P ({1, 2}) be a function such that f(u) = f(u0) = {1, 2} and
f(x) = ∅, for every x ∈ V (G1)∪V (G2)\{u, u0}. If x ∈ (V (G2)\NG2(u))∪(V (G1)\Ru),
then ⋃

y∈N
C

(x)

f(y) = f(u) = {1, 2}

and if x ∈ NG2(u) ∪Ru, then
⋃

y∈N
C

(x)

f(y) = f(u0) = {1, 2}.

Therefore, f is a 2RDF of C(G, σ) and so γr2(C(G, σ)) ≤ ω(f) = 4. By Lemma 2.3,
γr2(C(G, σ)) ∈ {2, 3, 4}.
Lemma 2.8. Let G be a bipartite graph. Then γr2(C(G, σ)) ∈ {2, 3, 4}.
Proof. Let V (G2) = X ∪ Y , a ∈ X and b ∈ Y . Also assume that
g : V (C(G, σ))→ P ({1, 2}) be a function such that g(a) = g(b) = {1, 2} and g(x) = ∅
for every x ∈ V (G1) ∪ V (G2) \ {a, b}. For every x ∈ V (G1), we have x ∈ NC(a)
or x ∈ NC(b) or x ∈ NC(y), where y ∈ V (G2) \ {a, b}. Thus, x ∈ NC(b) or
x ∈ NC(a) or x ∈ NC(a) ∩ NC(b), respectively. So

⋃
z∈N

C
(x) g(z) = {1, 2}. On the

other hand, for every x ∈ V (G2), x ∈ X or x ∈ Y . So x ∈ NC(a) or x ∈ NC(b).
Hence,

⋃
z∈N

C
(x) g(z) = {1, 2}. Therefore, g is a 2RDF of C(G, σ) and so

γr2(C(G, σ)) ≤ ω(g) = 4. Lemma 2.6 completes the proof.
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3. 2-RAINBOW DOMINATION NUMBER OF FUNCTIGRAPH

In the following theorem we obtain a tight bound of γr2(C(G, σ)) for any graph G.

Theorem 3.1. For any graph G,

γr2(G) ≤ γr2(C(G, σ)) ≤ 2γr2(G).

Furthermore, these bounds are sharp.

Proof. Let fi : V (Gi) → P ({1, 2}) be a 2RDF for Gi and γr2(Gi) = ω(fi), where
i ∈ {1, 2}. Also let f : V (G1) ∪ V (G2) → P ({1, 2}) where if x ∈ V (Gi), then
f(x) = fi(x) for i ∈ {1, 2}. Clearly, f is a 2RDF of C(G, σ). So

γr2(C(G, σ)) ≤ ω(f) = ω(f1) + ω(f2) = 2γr2(G).

Now, let g be a 2RDF of C(G, σ) such that ω(g) = γr2(C(G, σ)). Define

S1 =
{
u ∈ V (G2); g(u) 6= ∅

}
,

S2 =
{
u ∈ V (G2); g(u) = ∅,

⋃

uk∈NG2 (u)

g(uk) = {1, 2}
}
,

S3 =
{
u ∈ V (G2); g(u) = ∅,

⋃

uk∈NG2 (u)

g(uk) 6= {1, 2}
}
.

If u ∈ S3, then there exists v ∈ V (G1) such that σ(v) = u and |g(v)| ≥ 1. Hence,
∑

vi∈V (G1)

|g(vi)| ≥ |S3|.

Suppose that f : V (G2) → P ({1, 2}) where f(x) = g(x) for every x ∈ S1 ∪ S2 and
f(x) = {1} for every x ∈ S3. Clearly, f is a 2RDF of G2. Then we have

γr2(C(G, σ)) = ω(g) =
∑

vi∈V (G1)

|g(vi)|+
∑

ui∈V (G2)

|g(ui)|

=
∑

vi∈V (G1)

|g(vi)|+
∑

ui∈S1∪S2

|g(ui)|+
∑

ui∈S3

|g(ui)|

=
∑

vi∈V (G1)

|g(vi)|+
∑

ui∈S1∪S2

|g(ui)|+ 0

=
∑

vi∈V (G1)

|g(vi)|+
∑

ui∈S1∪S2

|f(ui)|+ |S3| − |S3|

=
∑

vi∈V (G1)

|g(vi)| − |S3|+
∑

ui∈S1∪S2

|f(ui)|+
∑

ui∈S3

|f(ui)|

=
∑

vi∈V (G1)

|g(vi)| − |S3|+ ω(f) ≥ ω(f) ≥ γr2(G2) = γr2(G).
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Therefore,
γr2(G) ≤ γr2(C(G, σ)) ≤ 2γr2(G).

It is easy to see that if σ is a permutation, then C(P2, σ) ∼= C4. Since γr2(P2) = 2
and γr2(C4) = 2, so γr2(P2) = γr2(C(P2, σ)). Also we know that γr2(Kn) = n and
C(Kn, id) ∼= nP2. Hence, γr2(C(Kn, id)) = 2γr2(Kn). Thus, the bounds are sharp.

Theorem 3.2. Let G be a graph of order n and Bn = {u}. Then

γr2(G) ≤ γr2(C(G, σ)) ≤ γr2(G) + 2.

Proof. Let f be a 2RDF ofG such that γr2(G)=ω(f). Define g :V (C(G,σ))→P ({1,2})
such that g(u) = {1, 2}, g(x) = ∅ for every x ∈ V (G1) and g(y) = f(y) for
y ∈ V (G2) \ {u}. Then for y ∈ V (G2) \ {u} we have

⋃

u′∈NC (y)

g(u′) =
⋃

u′∈NG2 (y)

f(u′) = {1, 2}

and for every v ∈ V (G1),
⋃

x∈NC (v)

g(x) = g(u) = {1, 2}.

So g is a 2RDF of C(G, σ). Hence, γr2(C(G, σ)) ≤ ω(g). Now if f(u) = {1, 2} or
|f(u)| = 1, then ω(g) = ω(f) or ω(g) = 1 + ω(f), respectively. Also ω(g) = 2 + ω(f),
if f(u) = ∅. Hence, by Theorem 3.1, we have

γr2(C(G, σ)) ∈ {γr2(G), 1 + γr2(G), 2 + γr2(G)}.

Theorem 3.3. Let G be a graph of order n ≥ 3 such that has a universal vertex.
Then γr2(G) = γr2(C(G, σ)) if and only if Bn = {w}, where w is an universal
vertex of G2.
Proof. Let w be an universal vertex of G2 and Bn = {w}. Then w is an universal
vertex of C(G, σ). By Lemma 2.4, γr2(G) = γr2(G2) = γr2(C(G, σ)) = 2.

Conversely, let γr2(G) = γr2(C(G, σ)). By Lemma 2.4, γr2(G) = 2 and so
γr2(C(G, σ)) = 2. Assume that g be a 2RDF of C(G, σ) such that ω(g) = 2. Let a and b
be two vertices in V (G1)∪V (G2) such that |g(a)| = |g(b)| = 1. Then g(x) = ∅, for every
x ∈ V (G1)∪ V (G2) \ {a, b}. Hence, every vertex in V (G1)∪ V (G2) \ {a, b} is adjacent
to a and b, which is impossible. Now let a ∈ V (G1) ∪ V (G2) and g(a) = {1, 2}. Then
g(x) = ∅, for every x ∈ V (G1) ∪ V (G2) \ {a}. So every vertex in V (G1) ∪ V (G2) \ {a}
is adjacent to a. Hence, a is a universal vertex of G2 and Bn = {a}.
Theorem 3.4. Let G be a graph of order n ≥ 4 and has an universal vertex. Then:
(1) γr2(C(G, σ)) ∈ {2, 3, 4},
(2) γr2(C(G, σ)) = 2 if and only if Bn = {w}, where w is an universal vertex of G2,
(3) γr2(C(G, σ)) = 3 if and only if Bn = {a} and degG2(a) = n− 2 or Bn−1 = {a}

and degG2(a) = n − 1 or Bn−1 = {a}, Ra = G1 \ {b}, NG1(b) = G1 \ {b},
G2 \ {a, σ(b)} ⊆ NG2(c) and G2 \ {c} ⊆ NG2(a), for some c ∈ V (G2).
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Proof. (1) Let v and u be two universal vertices of G1 and G2, respectively. Define
g : V (C(G, σ)) → P ({1, 2}) such that g(v) = g(u) = {1, 2} and g(x) = ∅ for every
x ∈ V (G1)∪V (G2)\{u, v}. So g is a 2RDF of C(G, σ) and so γr2(C(G, σ)) ≤ ω(g) = 4.
By Lemma 2.3, γr2(C(G, σ)) ∈ {2, 3, 4}.

(2) This is the result of Lemma 2.4 and Theorem 3.3.
(3) Let γr2(C(G, σ)) = 3 and g be a 2RDF of C(G, σ), such that γr2(C(G, σ)) =

ω(g) = 3. Then there are two following cases:
Case 1. Let a, b ∈ V (G1) ∪ V (G2), g(a) = {1, 2}, |g(b)| = 1 and g(x) = ∅, for every
x ∈ V (G1) ∪ V (G2) \ {a, b}. Then every vertex in V (G1) ∪ V (G2) \ {a, b}, is adjacent
to a. So a ∈ V (G2). If b ∈ V (G2), then Bn = {a} and by item (2), a is not a
universal vertex of G2. Hence, b /∈ NG2(a). So degG2(a) = n− 2. If b ∈ V (G1), then
a is a universal vertex of G2 and by item (2), σ(b) 6= a. Hence, Bn−1 = {a} and
degG2(a) = n− 1.
Case 2. Let a, b, c ∈ V (G1) ∪ V (G2) and |g(a)| = |g(b)| = |g(c)| = 1. Also assume that
g(a) = {2}, g(b) = g(c) = {1} and g(x) = ∅, for every x ∈ V (G1)∪V (G2)\{a, b, c} (or
g(a) = {1} and g(b) = g(c) = {2}). Then every vertex in V (G1) ∪ V (G2) \ {a, b, c} is
adjacent to a. So a ∈ V (G2) and G2 \ {b, c} ⊆ NG2(a). Since g is a 2RDF of C(G, σ),
so |{b, c}∩V (G1)| ≥ 1. If {b, c} ⊆ V (G1), then there exists x ∈ V (G2) \ {a, σ(b), σ(c)}
such that

⋃
y∈NC(x) g(y) = {2}, which is a contradiction. Thus |{b, c} ∩ V (Gi)| = 1,

for i ∈ {1, 2}. Without loss of generality, let b ∈ V (G1) and c ∈ V (G2). Then
G2 \ {c} ⊆ NG2(a) and so degG2(a) ≥ n − 2. If σ(b) = a, then Bn = {a} and by
item (2), a is not an universal vertex of G2. So c /∈ NG2(a). Hence, degG2(a) = n−2. If
σ(b) 6= a, then Ra = G1 \{b}, Bn−1 = {a} and σ(b) ∈ NG2(a) (when σ(b) 6= c). Since g
is a 2RDF and g(x) = ∅, for x ∈ V (G1)∪V (G2)\{a, b, c}, so V (G2)\{σ(b), a} ⊆ NG2(c)
and NG1(b) = G1 \ {b}.

Conversely, let Bn = {a}, degG2(a) = n − 2 and b ∈ V (G2) \ NG2(a). Then
g : V (G1) ∪ V (G2) → P ({1, 2}) with g(a) = {1, 2}, g(b) = {1} and g(x) = ∅, for
every x ∈ V (G1)∪ V (G2) \ {a, b}, is a 2RDF of C(G, σ). So γr2(C(G, σ)) ≤ ω(g) = 3.
By item (2) and Lemma 2.3, γr2(C(G, σ)) = 3.

Now suppose that Bn−1 = {a} and degG2(a) = n − 1. Also let b ∈ V (G1) and
σ(b) 6= a. Then define g(a) = {1, 2}, g(b) = {1} and g(x) = ∅, for every x ∈
V (G1) ∪ V (G2) \ {a, b}. So g is a 2RDF of C(G, σ) and so γr2(C(G, σ)) ≤ ω(g) = 3.
By item (2) and Lemma 2.3, γr2(C(G, σ)) = 3.

Finally, let Bn−1 = {a}, Ra = G1 \{b}, NG1(b) = G1 \{b}, G2 \{a, σ(b)} ⊆ NG2(c)
and G2 \ {c} ⊆ NG2(a), for some c ∈ V (G2). Define g(a) = {2}, g(b) = g(c) = {1}
and g(x) = ∅, for every x ∈ V (G1) ∪ V (G2) \ {a, b, c}, then g is a 2RDF of C(G, σ).
For this reason γr2(C(G, σ)) ≤ ω(g) = 3. Again, by item (2) and Lemma 2.3, give the
result.

Corollary 3.5. Let n ≥ 4 and G ∼= Kn. Then
(1) γr2(C(G, σ)) ∈ {2, 3, 4},
(2) γr2(C(G, σ)) = 2 if and only if |Bn| = 1,
(3) γr2(C(G, σ)) = 3 if and only if |Bn−1| = 1.
Proof. By Theorem 3.4, the proof is straightforward.
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In the mathematical field of graph theory, the friendship graph (or Dutch windmill
graph) Km

3 is a graph with 2m+ 1 vertices and 3m edges. The friendship graph Km
3

can be constructed by joining m copies of the cycle graph C3 with a common vertex.
Also fan graph Fn is isomorphic to corona product K1 ◦ Pn and wheel graph Wn is
isomorphic to corona product K1 ◦ Cn.

Corollary 3.6. Let n ≥ 5, m ≥ 3, G ∈ {Fn,Wn,K1,n,K
m
3 } and w be an universal

vertex of G. Then

(1) γr2(C(G, σ)) ∈ {2, 3, 4},
(2) γr2(C(G, σ)) = 2 if and only if Bn = {w},
(3) γr2(C(G, σ)) = 3 if and only if Bn−1 = {w}.

Proof. Since G does not have any vertex of degree n− 2, by Theorem 3.4, the proof is
straightforward.

4. 2-RAINBOW DOMINATION NUMBER OF COMPLEMENT
OF FUNCTIGRAPH

In this section, we investigate 2-rainbow domination number of complement of functi-
graph.

Theorem 4.1. Let G be graph and δ(G) ≥ 1. Then γr2(C(G, σ)) = 2 if and only if
G has P2 as a component and V (P2) ∩R(σ) = ∅, where R(σ) is the image of σ.

Proof. Let γr2(C(G, σ)) = 2 and g be a 2RDF of C(G, σ), where ω(g) = 2. Then
there is a ∈ V (C(G, σ)) such that g(a) = {1, 2} or there are a, b ∈ V (G1) ∪ V (G2)
such that g(a) = {1} and g(b) = {2} (or g(a) = {2} and g(b) = {1}).

Let g(a) = {1, 2}. Then every vertex in V (G1) ∪ V (G2) \ {a} is adjacent to a in
C(G, σ). So a is an isolated vertex of G. This is contradiction by δ(G) ≥ 1.

Let a, b ∈ V (G1) ∪ V (G2), such that g(a) = {1} and g(b) = {2}. If a ∈ V (G1)
and b ∈ V (G2), then all of the vertices in V (G1) ∪ V (G2) \ {a, b} are adjacent to
a and b in C(G, σ). It follows that a is an isolated vertex in G, which is impossible. If
a, b ∈ V (G1), then all of the vertices V (G2) are adjacent to a and b in C(G, σ). That
is impossible. Let a, b ∈ V (G2). Since

V (G1) ∪ V (G2) \ {a, b} ⊆ NC(a) ∩NC(b),

so a, b ∈ B0 of C(G, σ). Since δ(G) ≥ 1, so degG2(a) = degG2(b) = 1 and a is adjacent
to b. Thus, P2 is a component of G and V (P2) ∩R(σ) = ∅.

Conversely, let P2 be a component of G, V (P2) = {a, b} and V (P2) ∩ R(σ) = ∅.
Then all of the vertices V (G1) ∪ V (G2) \ {a, b} in C(G, σ) are adjacent to a and b.
Suppose that g : V (G1) ∪ V (G2) → P ({1, 2}) where g(a) = {1}, g(b) = {2} and
g(x) = ∅ for every x ∈ V (G1) ∪ V (G2) \ {a, b}. Then g is a 2RDF of C(G, σ) and so
γr2(C(G, σ)) ≤ ω(g) = 2. By Lemma 2.6, γr2(C(G, σ)) = 2.
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Corollary 4.2. If G is a tree of order n ≥ 4, then γr2(C(G, σ)) ∈ {3, 4}.
Proof. By Lemma 2.8, γr2(C(G, σ)) ∈ {2, 3, 4}. Since G is a tree of order at least 4,
so G does not have P2 as a component and so by Theorem 4.1, γr2(C(G, σ)) 6= 2.
Therefore, γr2(C(G, σ)) ∈ {3, 4}.

Corollary 4.3. For any connected graph G of order n ≥ 3, γr2(C(G, σ)) ∈ {3, 4, 5}.
Proof. Since G is a connected graph, so G does not have P2 as a component.
By Lemma 2.3 and Theorem 4.1, γr2(C(G, σ)) ∈ {3, 4, 5}.

Theorem 4.4. Let G be a graph of order n with δ(G) ≥ 1 and P2 is not a component
of G. Then γr2(C(G, σ)) = 3 if and only if one of the following items holds:

(1) there exists a ∈ V (G1) such that NG1(a) = {b} and NC(b) ∩NC(σ(a)) = {a},
(2) B0 6= ∅, a ∈ B0 and degG2(a) = 1,
(3) B1 6= ∅, a ∈ B1, NG2(a) = b and NG1(v) ∩Rb = ∅, where Ra = {v},
(4) B0 6= ∅, a ∈ B0, NG2(a) = {b, c} and NG2(b) ∩NG2(c) = {a}.
Proof. Let γr2(C(G, σ)) = 3 and g be a 2RDF of C(G, σ) with ω(g) = 3. Then we
have the following two cases:
Case 1. There are two vertices a and b in V (G1) ∪ V (G2) such that g(a) = {1, 2},
g(b) = {1} (or g(b) = {2}) and g(x) = ∅ for every x ∈ V (G1) ∪ V (G2) \ {a, b}. Then
all of the vertices in V (G1)∪V (G2)\{a, b} are adjacent to a in C(G, σ). If a ∈ V (G1),
then b ∈ V (G1) and NG1(a) = {b}, because δ(G1) ≥ 1. So σ(a) is adjacent to a in
C(G, σ), which is impossible. Hence, a ∈ V (G2) and NG2(a) = {b}. Thus, a ∈ B0 and
degG2(a) = 1. This gives (2).
Case 2. There are three vertices a, b and c in V (G1)∪V (G2) such that g(a) = {2} and
g(b) = g(c) = {1}. Then all of the vertices in V (G1) ∪ V (G2) \ {a, b, c} are adjacent
to a in C(G, σ). So degC(G,σ)(a) ∈ {1, 2}. If degC(G,σ)(a) = 1, then NC(a) = {b}
or NC(a) = {c}. Without loss of generality, let NC(a) = {b}. Then a, b ∈ V (G1)
or a, b ∈ V (G2), because δ(G) ≥ 1. If a, b ∈ V (G1), then σ(a) ∈ NC(a) and so
b = σ(a) ∈ V (G2). This is not true. So a, b ∈ V (G2) and a ∈ B0. This gives (2). Now
suppose that degC(G,σ)(a) = 2. Then NC(a) = {b, c}. If a ∈ V (G1), then σ(a) = c (or
σ(a) = b) and so NG1(a) = {b} (or NG1(a) = c). Also since g is a 2RDF of C(G, σ),
NC(b) ∩NC(σ(a)) = {a}. This gives (1).

Now let a ∈ V (G2). Since NC(a) = {b, c} and δ(G2) ≥ 1, so NG2(a) = b and
Ra = {c} or NG2(a) = {b, c}. If NG2(a) = b and Ra = {c}, then a ∈ B1, degG2(a) = 1
and NG1(c) ∩ Rb = ∅. This gives (3). If NG2(a) = {b, c}, then a ∈ B0. Furthermore,
since g is a 2RDF of C(G, σ), NG2(b) ∩NG2(c) = {a}. This gives (4).

Conversely, let there exists a ∈ V (G1) such that NG1(a) = {b} and
NC(b) ∩NC(σ(a)) = {a}. Then function g : V (C(G, σ))→ P ({1, 2}) with g(a) = {2},
g(b) = {1} and g(σ(a)) = {1} is a 2RDF of C(G, σ). Hence, γr2(C(G, σ)) ≤ ω(g) = 3.

Let a ∈ B0 and degG2(a) = 1. Define g : V (C(G, σ)) → P ({1, 2}) such that
g(a) = {1, 2} and g(b) = {1}. So g is a 2RDF of C(G, σ), where NG2(a) = {b}.
Therefore, γr2(C(G, σ)) ≤ ω(g) = 3.
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Let a ∈ B1, NG2(a) = {b} and NG1(v) ∩Rb = ∅, where Ra = {v}. Then function
g : V (C(G, σ)) → P ({1, 2}) where g(a) = {2} and g(b) = g(v) = {1} is a 2RDF of
C(G, σ). So γr2(C(G, σ)) ≤ ω(g) = 3.

Let a ∈ B0, NG2(a) = {b, c} and NG2(b) ∩ NG2(c) = {a}. Let g(a) = {2} and
g(b) = g(c) = {1}. Then g is a 2RDF of C(G, σ). It follows that γr2(C(G, σ)) ≤
ω(g) = 3.

In all cases, by Lemma 2.6 and Theorem 4.1, γr2(C(G, σ)) = 3.

Corollary 4.5. Let n ≥ 5. Then γr2(C(Kn, σ)) ∈ {4, 5}.
Proof. By Theorems 4.1 and 4.4, γr2(C(Kn, σ)) ∈ {4, 5}.

Theorem 4.6. Let G ∼= Kn be a graph of order n ≥ 5. Then γr2(C(G, σ)) = 5 if and
only if B1 = B2 = ∅.
Proof. Let B1 = B2 = ∅. On the contrary, suppose that γr2(C(G, σ)) 6= 5.
By Corollary 4.5, γr2(C(G, σ)) = 4. Assume that g is a 2RDF of C(G, σ) such
that ω(g) = 4. Since n ≥ 5,

∑
x∈V (G2) |g(x)| = 2 and

∑
x∈V (G1) |g(x)| = 2. We have

two following cases.
Case 1. Let v, v

′ ∈ V (G1) and |g(v)| = |g(v′)| = 1. If g(σ(v)) = ∅, then∑
x∈N

C
(σ(v)) |g(x)| = 1. That is not true. So |g(σ(v))| = |g(σ(v′))| = 1 or σ(v) = σ(v′)

and g(σ(v)) = {1, 2}. Let |g(σ(v))| = |g(σ(v′))| = 1. Since |B1| = |B2| = 0, there
exists an v

′′ ∈ V (G1) \ {v, v′} such that σ(v′′) = σ(v) (or σ(v′′) = σ(v′)). Hence,∑
x∈N

C
(v′′ ) |g(x)| = 1. Which is a contradiction. Let σ(v) = σ(v′) and g(σ(v)) = {1, 2}.

Since |B1| = |B2| = 0, there exists an v′′ ∈ V (G1) \ {v, v′} such that σ(v′′) = σ(v) (or
σ(v′′) = σ(v′)). Hence,

∑
x∈N

C
(v′′ ) |g(x)| = 0. That is not true.

Case 2. Let v ∈ V (G1) and g(v) = {1, 2}. Since B1 = B2 = ∅, so there are v1, v2 ∈
V (G1), such that σ(v1) = σ(v2) = σ(v). Since g(v1) = ∅ and ∑

x∈N
C

(v1) g(x) = {1, 2},
so g(σ(v)) = ∅. It is clear that ∑

x∈N
C

(σ(v)) g(x) = ∅, which is a contradiction.

Conversely, let B1 6= ∅, u ∈ B1 and f be a function such that f(u) = f(v) = {1, 2},
and f(x) = ∅ for every x ∈ V (G1)∪V (G2)\{v, u}, where Ru = {v}. Then f is a 2RDF
of C(G, σ) and so γr2(C(G, σ)) ≤ ω(f) = 4. Let B2 6= ∅, u ∈ B2, Ru = {v1, v2} and
f be a function such that f(v1) = {1}, f(v2) = {2}, f(u) = {1, 2} and f(x) = ∅
for every x ∈ V (G1) ∪ V (G2) \ {v1, v2, u}. Then f is a 2RDF of C(G, σ) and so
γr2(C(G, σ)) ≤ ω(f) = 4. However, γr2(C(G, σ)) 6= 5. The proof is completed.

Theorem 4.7. Let G 6∼= K4 be a cubic graph. Then γr2(C(G, σ)) = 4.

Proof. By Lemma 2.6, Theorems 4.1 and 4.4, γr2(C(G, σ)) ≥ 4.
If B1 6= ∅, then γr2(C(G, σ)) ≤ 4 and so γr2(C(G, σ)) = 4.
Let B1 = ∅. Then B0 6= ∅. Assume that u ∈ B0 and NG1(u) = {u1, u2, u3}.

If G2[{u1, u2, u3}] has an isolated vertex, then by Lemma 2.7, γr2(C(G, σ)) ≤ 4 and
so γr2(C(G, σ)) = 4.

Let G2[{u1, u2, u3}] does not have any isolated vertices. Then G2[{u1, u2, u3}] ∼= P3
or K3. Since G 6∼= K4, so G2[{u1, u2, u3}] 6∼= K3. Thus, G2[NG2(u)] is isomorphic
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to H (see Figure 1). Let u′ ∈ NG2(u3). Then G2[NG2(u′)] has one isolated vertex.
By Lemma 2.7, γr2(C(G, σ)) ≤ 4. Therefore, γr2(C(G, σ)) = 4.

u

u1 u2 u3

Fig. 1. The graph H
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