PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some applications and maximum principles for multi-term time-space fractional parabolic Monge-Ampère equation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study first establishes several maximum and minimum principles involving the nonlocal Monge-Ampère operator and the multi-term time-space fractional Caputo-Fabrizio derivative. Based on the maximum principle established above, on the one hand, we show that a family of multi-term time-space fractional parabolic Monge-Ampère equations has at most one solution; on the other hand, we establish some comparison principles of linear and nonlinear multi-term time-space fractional parabolic Monge-Ampère equations.
Wydawca
Rocznik
Strony
art. no. 20240031
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan, Shanxi 030031, China
autor
  • School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan, Shanxi 030031, China
  • Department of Technical Sciences, Western Caspian University, Baku 1001, Azerbaijan
autor
  • Department of Basic Sciences, Faculty of Engineering, Hasan Kalyoncu University, TR-27010 Gaziantep, Turkey
Bibliografia
  • [1] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampére equation, Comm. Pure Appl. Math. 37 (1984), 369–402.
  • [2] Z. Zhang, Optimal global and boundary asymptotic behavior of large solutions to the Monge-Ampère equation, J. Funct. Anal. 278 (2020), 108512.
  • [3] L. Caffarelli and Y. Li, A Liouville theorem for solutions of the Monge-Ampère equation with periodic data, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 97–120.
  • [4] B. Guan and H. Jian, The Monge-Ampère equation with infinite boundary value, Pacific J. Math. 216 (2004), 77–94, DOI: https://doi.org/10.2140/pjm.2004.216.77.
  • [5] G. D. Philippis, A. Figalli, and O. Savin, A note on interior +W ε2,1 estimates for the Monge-Ampère equation, Math. Ann. 357 (2013), 11–22.
  • [6] L. Caffarelli and F. Charro, On a fractional Monge-Ampère operator, Ann. PDE 1 (2015), no. 1, 4–47.
  • [7] G. Wang, Y. Liu, J. Nieto, and L. Zhang, Asymptotic radial solution of parabolic tempered fractional Laplacian problem, Bull. Malays. Math. Sci. Soc. 46 (2023), no. 1, 1, DOI: https://doi.org/10.1007/s40840-022-01394-x.
  • [8] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), 73–78.
  • [9] J. Juan, Solution of a fractional logistic ordinary differential equation, Appl. Math. Lett. 123 (2022), 107568.
  • [10] T. M. Atanacković, S. Pilipović, and D. Zorica, Properties of the Caputo-Fabrizio fractional derivative and its distributional settings, Fract. Calc. Appl. Anal. 21 (2018), 29–44.
  • [11] D. Baleanu, A. Jajarmi, H. Mohammadi, and S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals 134 (2020), 109705, DOI: https://doi.org/10.1016/j.chaos.2020.109705.
  • [12] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, vol. 204, 2006.
  • [13] G. Wang, K. Pei, R. P. Agarwal, L. Zhang, and B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math. 343 (2018), 230–239.
  • [14] D. Kumar, J. Singh, K. Tanwar, and D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power exponential and Mittag-Leffler laws, Int. J. Heat Mass Transf. 138 (2019), 1222–1227.
  • [15] L. Zhang, N. Qin, and B. Ahmad, Explicit iterative solution of a Caputo-Hadamard-type fractional turbulent flow model, Math. Methods Appl. Sci. (2020), 1–11, DOI: https://doi.org/10.1002/mma.6277.
  • [16] D. Baleanu and A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 444–462.
  • [17] M. Kirane and B. Torebek, Maximum principle for space and time-space fractional partial differential equations, Mathematic 2020 (2020), 1–24.
  • [18] S. Zeng, S. Miǵorski, V. Nguyen, and Y. Bai, Maximum principles for a class of generalized time-fractional diffusion equations, Fract. Calc. Appl. Anal. 23 (2020), 822–836.
  • [19] Z. Liu, S. Zeng, and Y. Bai, Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications, Fract. Calc. Appl. Anal. 19 (2016), 188–211.
  • [20] T. Guan and L. Zhang, Maximum principle for variable-order fractional conformable differential equation with a generalized tempered fractional Laplace operator, Fractal Fract. 7 (2023), 798, DOI: https://doi.org/10.3390/fractalfract7110798.
  • [21] L. Zhang, B. Ahmad, and G. Wang, Analysis and application for a diffusion equations with a new fractional derivative without singular kernel, Electron. J. Differential Equations 289 (2017), 1–6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d03cd09-7bf0-4d66-95aa-5da27d456813
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.