PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of pumice additions on thermal and mechanical behaviors of epoxy resin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, thermal conductivity, mechanical properties, and thermal degradation of pumice-added epoxy materials were investigated. 2%, 4%, 6%, 8%, and 10% of pumice was added to the epoxy resin (EP) % by weight. Various types of analyses and tests were conducted to determine the thermal conductivity, mechanical properties, and thermal degradation of these epoxy materials. The tests and analyses proved that the addition of pumice leads to a decrease in the thermal conductivity coefficient and density of the pure EP material. It also increases the degree of hardness. The addition of pumice had a positive effect on mechanical properties. Compared to pure EP, it increased the tensile strength, Young’s modulus, bending strength, and flexural modulus. As a result of TGA analysis it was determined that with the incorporation of pumice into the EP, its decomposition rate progressed more slowly. At 800_C, the carbon residue improved as a result of the addition of pumice.
Rocznik
Strony
art. no. e146286
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Burdur Mehmet Akif Ersoy University, Department of Electrical and Energy, 15100, Burdur, Turkey
Bibliografia
  • [1] M. Bakar and J. Szymańska, “Property enhancement of epoxy resin using a combination of amine-terminated butadiene–acrylonitrile copolymer and nanoclay,” J. Thermoplast. Compos. Mater., vol. 27, no. 9, pp. 1239–1255, 2014, doi: 10.1177/0892705712470265.
  • [2] J. Cao, H. Duan, J. Zou, J. Zhang, and H. Ma, “A bio-based phosphorus-containing co-curing agent towards excellent flame retardance and mechanical properties of epoxy resin,” Polym. Degrad. Stabil., vol. 187, p. 109548, 2021, doi: 10.1016/j.polymdegradstab.2021.109548.
  • [3] F.L. Jin and S.J. Park, ”Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate,” Bull. Korean Chem. Soc., vol. 30, no. 2, pp. 334–338, 2009.
  • [4] F. Fang, S. Ran, Z. Fang, P. Song, and H. Wang, “Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water,” Composites Part B, vol. 165, pp. 406–416, 2019, doi: 10.1016/j.compositesb.2019.01.086.
  • [5] C.K. Lam and K.T. Lau, “Optimization Effect of Micro Hardness by Nanoclay Clusters in Nanoclay/Epoxy Composites,” J. Thermoplast. Compos. Mater., vol. 22, no. 2, pp. 213–225, 2009, doi: 10.1177/0892705708091856.
  • [6] R.K. Misra, S. Kumar, K. Sandeep, and A. Misra., “Some experimental and theoretical investigations on fire retardant coir/epoxymicro-composites,” J. Thermoplast. Compos. Mater., vol. 21, no. 1, pp. 71–101, 2008, doi: 10.1177/0892705707084544.
  • [7] J. Zhang and S. Shuhua Qi, “Mechanical, thermal and dielectric properties of aluminum nitride/epoxy resin composites,” J. Elastomer Plast., vol. 47, no. 5, pp. 431–438, 2015, doi: 10.1177/0095244313516887.
  • [8] K.E. Hofer and R. Porte, “Influence of Moisture On the Impact Behavior of Hybrid Glass/Graphite/Epoxy Composites,” J. Elastomer Plast., vol. 10, no. 3, pp. 271–281, 1978, doi: 10.1177/009524437801000306.
  • [9] R.A. Naik, S.R. Patel, and S.W. Case, “Fatigue damage mechanism characterization and modeling of a woven graphite/epoxy composite,” J. Thermoplast. Compos. Mater., vol. 14 no. 5, pp. 404–420, 2001, doi: 10.1106/YNR6-XVQP-QU7C-XNG3.
  • [10] B. Aydoğan and N. Usta, “Investigation the effects of nanoclay and intumescent flame retardant additions on thermal and fire behaviour of rigid polyurethane foams,” J. Fac. Eng. Archit. Gazi Univ., vol. 30, no. 1, pp. 9–18, 2015.
  • [11] S. Thanga Kasi Rajan, A.N. Balaji, P. Narayanasamy, and S.C. Vettivel, “Microstructural, electrical, thermal and tribological studies of copper-fly ash composites through powder metallurgy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 935–940, 2018, doi: 10.24425/bpas.2018.125941.
  • [12] P. Müller, Y. Bykov, and M. Döring, “New star-shaped phosphorus-containing flame retardants based on acrylates for epoxy resins,” Polym. Adv. Technol., vol. 24, pp. 834–40, 2013.
  • [13] Y.Z. Feng et al., “Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene,” J. Mater. Chem. A, vol. 5, pp. 13544–13556, 2017, doi: 10.1039/C7TA02934A.
  • [14] F.-L. Guan, C.-X. Gui, H.-B. Zhang, Z.-G. Jiang, Y. Jiang, and Z.-Z. Yu, “Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide,” Composites Part B-Eng., vol. 98, pp. 134–140, 2016.
  • [15] R. Jian, P. Wang, W. Duan, J. Wang, X. Zheng, and J. Weng, “Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior,” Ind. Eng. Chem. Res., vol. 55, pp. 11520–11527, 2016.
  • [16] R.-K. Jian, Y.-F. Ai, L. Xia, L.-J. Zhao, and H.-B. Zhao, “Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins,” J. Hazard. Mater., vol. 371, pp. 529–539, 2019, doi: 10.1016/j.jhazmat.2019.03.045.
  • [17] H. Duan, Y. Chen, S. Ji, R. Hu, and H. Ma, “A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties,” Chem. Eng. J., vol. 375, p. 121916, 2019, doi: 10.1016/j.cej.2019.121916.
  • [18] M. Erdem, K. Ortaç, B. Erdem, and H. Tork, “Effect of reactive organobentonite additives to the some performance properties of rigid polyurethane foam,” J. Fac. Eng. Archit. Gazi Univ., vol. 32, no. 4, pp. 1209–1219, 2017.
  • [19] R. Yurtseven, “Effects of Ammonium Polyphosphate/Melamine Additions on Mechanical, Thermal and Burning Properties of Rigid Polyurethane Foams,” Acta Phys. Pol. A, vol. 135, no. 4, pp. 775–777, 2019.
  • [20] İ. Kırbaş, “Improving the structural and physical properties of boric acid-doped rigid polyurethane materials,” Compos. Adv. Mater., vol. 30, pp. 1–7, 2021, doi: 10.1177/26349833211010819.
  • [21] B. Aydoğan and N. Usta, “Experimental investigations of thermal conductivity, thermal degradation and fire resistance of rigid polyurethane foams filled with nanocalcite and intumescent flame retardant,” J. Therm. Sci. Technol., vol. 32, no. 2, pp. 63–74, 2015.
  • [22] S.H. Khorzughy, T. Eslamkish, and F.D. Ardejani, “Cadmium removal from aqueous solutions by pumice and nano-pumice,” Korean J. Chem. Eng., vol. 32, no. 1, pp. 88–96, 2015.
  • [23] R. Wojnar, “Flow of Stokesian fluid through a cellular medium and thermal effects,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 2, pp. 321–329, 2014, doi: 10.2478/bpasts-2014-0031.
  • [24] ¸S. Kilincarslan, M. Davraz, and M. Akça, “The effect of pumice as aggregate on the mechanical and thermal properties of foam concrete,” Arab. J. Geosci., vol. 11, no. 289, pp. 1–6, 2018, doi: 10.1007/s12517-018-3627-y.
  • [25] R.B. Karthika, V. Vidyapriya, K.V. Nandhini Sri, K. Merlin Grace Beaula, R. Harini, and Mithra Sriram, “Experimental study on lightweight concrete using pumice aggregate,” Mater. Today-Proc., vol. 43, pp. 1606–1613, 2021, doi: 10.1016/j.matpr.2020.09.762.
  • [26] M. Tapan, T. Depci, A. Ozvan, T. Efe, V. Oyan, “Effect of physical, chemical and electro-kinetic properties of pumice on strength development of pumice blended cements,” Mater. Struct., vol. 46, pp. 1695–1706, 2013, doi: 10.1617/s11527-012-0008-y.
  • [27] M. Taherishargh, I.V. Belova, G.E. Murch, and T. Fiedler, “Pumice/aluminium syntactic foam,” Mater. Sci. Eng. A, vol. 635, pp. 102–108, 2015, doi: 10.1016/j.msea.2015.03.061.
  • [28] Ö. Çimen, M. Saltan, and S.K. Keskin, “Stabilization of clayey subgrade with waste pumice,” Sci. Eng. Compos. Mater., vol. 22, no. 5, pp. 583–590, 2015, doi: 10.1515/secm-2013-0315.
  • [29] F.L. Jin and S.J. Park, “Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate,” Bull. Korean Chem. Soc., vol. 30, no. 2, pp. 334–338, 2009, doi: 10.1016/j.msea.2015.03.061.
  • [30] G. Ahmetli, M. Dag, H. Deveci, and R. Kurbanli, “Recycling Studies of Marble Processing Waste: Composites Based on Commercial Epoxy Resin,” J. Appl. Polym. Sci., vol. 125, pp. 24–30, 2012.
  • [31] G. Ahmetli, N. Kocak, M. Dag, and R. Kurbanli, “Mechanical and Thermal Studies on Epoxy Toluene Oligomer-Modified Epoxy Resin/Marble Waste Composites,” Polym. Compos., vol. 33, pp. 1455–1463, 2012.
  • [32] F. Cunha et al., “Mechanical properties and antimicrobial activity of pumice stone/sludge filled thermosetting composites,” Sustain. Mater. Technol., vol. 30, p. e00348, 2021, doi: 10.1016/j.susmat.2021.e00348.
  • [33] S. Kocaman, “Preparation and Characterization of Natural Waste Reinforced Epoxy Resin Matrix Composites Modified with Different Chemicals,” Int. J. Eng. Res. Dev., vol. 11, no. 1, pp. 77–86, 2019, doi: 10.29137/umagd.459758.
  • [34] H. Alhumade, H. Rezk, A. M. Nassef, and M. Al-Dhaifallah, “Fuzzy Logic Based-Modeling and Parameter Optimization for Improving the Corrosion Protection of Stainless Steel 304 by Epoxy-Graphene Composite,” IEEE Access, vol. 7, pp. 100899–100909, 2019, doi: 10.1109/ACCESS.2019.2930902.
  • [35] S. Alraddadi and H. Assaedi, “Physical properties of mesoporous scoria and pumice volcanic rocks,” J. Phys. Commun., vol. 5, p. 115018, 2021, doi: 10.1088/2399-6528/ac3a95.
  • [36] J. Łukaszczyk, B. Janicki, and M. Kaczmarek, “Synthesis and properties of isosorbide based epoxy resin,” Europ. Polym. J., vol. 47, pp. 1601–1606, 2011, doi: 10.1016/j.eurpolymj.2011.05.009.
  • [37] L. Jiao, H. Xiao, Q. Wang, and J. Sun, “Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS,” Polym. Degrad. Stabil., vol. 98, no. 12, pp. 2687–2696, 2013, doi: 10.1016/j.polymdegradstab.2013.09.032.
  • [38] G. Nikolic, S. Zlatkovic, M. Cakic, C. Lacnjevac, and Z. Rajic, “Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts,” Sensors, vol. 10, pp. 684–696, 2010, doi: 10.3390/s100100684.
  • [39] E.C. Vázquez Barreiro, F. Fraga López, A. Jover, E. Rodríguez, and J. Vázquez Tato, “Paramagnetic epoxy resin,” eXPRESS Polym. Lett., vol. 11, no. 1, pp. 60–72, 2017, doi: 10.3144/expresspolymlett.2017.7.
  • [40] İ. Kırbaş, “Investigation of the internal structure, combustion, and thermal resistance of the rigid polyurethane materials reinforced with vermiculite,” J. Thermoplast. Compos. Mater., vol. 35, no. 10, pp. 1561–1575, 2022, doi: 10.1177/0892705720939152.
  • [41] K.L. Erickson, “Thermal decomposition mechanisms common to polyurethane, epoxy, poly(diallyl phthalate), polycarbonate and poly(phenylene sulfide,” J. Therm. Anal. Calorim., vol. 89, no. 2, pp. 427–440, 2007, doi: 10.1007/s10973-006-8218-6.
  • [42] M. Koyuncu, “The Influence of Pumice Dust on Tensile, Stiffness Properties and Flame Retardant of Epoxy/ Wood Flour Composites,” J. Trop. For. Sci., vol. 30, no. 1, pp. 89–94, 2018, doi: 10.26525/jtfs2018.30.1.8994.
  • [43] H. Wang et al., “A novel DOPO-based flame retardant containing benzimidazolone structure with high charring ability towards low flammability and smoke epoxy resins,” Polym. Degrad. Stabil., vol. 183, p. 109426, 2021, doi: 10.1016/j.polymdegradstab.2020.109426.
  • [44] D.S. Yawas, M. Sumaila, J. Sarki, and B.O. Samuel, “Manufacturing and optimization of the mechanical properties (tensile strength, flexural strength, and impact energy) of a chicken feather/egg shell/kaolin hybrid reinforced epoxy composite using the Taguchi technique,” Int. J. Adv. Manuf. Technol., 2023, doi: 10.1007/s00170-023-11108-7.
  • [45] E. Akdogan, M. Erdem, M.E. Ureyen, and M. Kaya, “Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame retardant properties,” J. Appl. Polym. Sci., vol. 47611, pp. 316–329, 2020, doi: 10.1002/APP.47611.
  • [46] T. Na, X. Liu, H. Jiang, L. Zhao, and C. Zhao, “Enhanced thermal conductivity of fluorinated epoxy resins by incorporating inorganic filler,” React. Funct. Polym., vol. 128, pp. 84–90, 2018, doi: 10.1016/j.reactfunctpolym.2018.05.004.
  • [47] K.A. Jasim and R.N. Fadhil, “The Effects of micro Aluminum fillers In Epoxy resin on the thermal conductivity,” J. Phys.: Conf. Ser., vol. 1003, p. 012082, 2018, doi: 10.1088/1742-6596/1003/1/012082.
  • [48] K. Sever, M. Atagür, M. Tunçalp, L. Altay, Y. Seki, and M. Sarıkanat, “The effect of pumice powder on mechanical and thermal properties of polypropylene,” J. Thermoplast. Compos. Mater., vol. 32, no. 8, pp. 1092–1106, 2019, doi: 10.1177/0892705718785692.
  • [49] S. Canbolat, D. Kut, and H. Dayioglu, “Investigation of pumice stone powder coating of multilayer surfaces in relation to acoustic and thermal insulation,” J. Ind. Text., vol. 44, no. 4, pp. 639–661, 2015, doi: 10.1177/1528083713516665.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cfb86bf-c6d9-4548-8287-19d94bbef356
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.