PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of vibration isolation generated by the inertial forces of an aircraft combustion engine on a test bench

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The scientific issues that are the subject of this article are related to the assessment of the vibration damping efficiency of an aircraft engine installed on a test stand for the type of vibration isolator used. For this purpose, appropriate empirical tests were carried out on an aircraft internal combustion piston engine of the Rotax 912 type, under conditions of variable engine speed, for selected mounting locations of vibration transducers on the engine and its frame. The effectiveness of vibration isolation of vibrations generated by inertia forces was assessed, based on the proposed mathematical equations and the determination of the values of discrete impulse and energy measures describing them for accelerations, velocities and vibration displacements in various directions. Thanks to this, it became possible to perform a diagnostic assessment of the generation and propagation of vibrations and their isolation from the perspective of operational vibration loads on the object and its supporting structure, as well as in the context of the research reliability of the signal for a given type of damping of forces and moments of inertia.
Czasopismo
Rocznik
Strony
art. no. 2024301
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Institute of Transport
  • Poznan University of Technology, Institute of Combustion Engines and Powertrains
  • Poznan University of Technology, Institute of Combustion Engines and Powertrains
Bibliografia
  • 1. Cao Y, Peng P, Wang H, Sun J, Xiao G, Zuo Z. Development of an innovative three-dimensional vibration isolation bearing. Engineering Structures 2023; 295: 116890. https://doi.org/10.1016/j.engstruct.2023.116890.
  • 2. Divijesh PP, Rao M, Rao R, Jain N, Prabhu P. Implementation of structurally pre-stressed piezo actuator based active vibration isolation system for micro milling. Materials Today: Proceedings 2023; 92: 182-8.
  • 3. Fang S, Chen K, Zhao B, Lai Z, Zhou S, Liao WH. Simultaneous broadband vibration isolation and energy harvesting at low frequencies with quasi-zero stiffness and nonlinear monostability. Journal of Sound and Vibration. 2023;553:117684. https://doi.org/10.1016/j.jsv.2023.117684.
  • 4. Fiebig W, Wróbel J. Two stage vibration isolation of vibratory shake-out conveyor. Archives of Civil and Mechanical Engineering 2017; 17(2): 199-204. https://doi.org/10.1016/j.acme.2016.10.001.
  • 5. https://www.bksv.com/en/instruments/daq-data-acquisition/lan-xi-daq-system/daq-modules/type-3050 (access date: 07.05.2024).
  • 6. https://www.bksv.com/en/transducers/vibration/accelerometers/ccld-iepe/4504-a (access date: 07.05.2024).
  • 7. https://www.bksv.com/media/doc/bp2288.pdf (access date: 07.05.2024).
  • 8. https://www.flyrotax.com/pl/products/912-ul-a-f (access date: 07.05.2024).
  • 9. https://www.lockwood.aero/engine-details/rotax912uls/314 (access date: 07.05.2024).
  • 10. Idaszewska N, Szymański GM. Identification of Characteristic Vibration Signal Parameters During Transport of Fruit and Vegetable. Vibrations in Physical Systems; 2020; 31(1): 2020111-1 2020111-10.
  • 11. Kobaszyńska-Twardowska A, Krzyżanowski M, Siwka P. Forecasting Trends of Safety Performance Indicators in Aviation. Safety & Defense 2023; 9(2): 1-11. https://doi.org/10.37105/sd.201.
  • 12. Korbicz J, Kościelny J. Modeling, diagnostics, and mastering processes. DiaSter implementation. Scientific and Technical Publishing House, Warsaw 2010.
  • 13. Liu C, Yu K, Liao B, Hu R. Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter. Communications in Nonlinear Science and Numerical Simulation 2021; 95: 105654. https://doi.org/10.1016/j.cnsns.2020.105654.
  • 14. Liu H, Huang X, Ding P, Wang B. Reliability evaluation method of vibration isolation performance of nonlinear isolator. Journal of Sound and Vibration 2023; 551:117616. https://doi.org/10.1016/j.jsv.2023.117616.
  • 15. Liu S, Peng G, Li Z, Li W, Sun L. Low-frequency vibration isolation via an elastic origami-inspired structure. International Journal of Mechanical Sciences 2023;260:108622. https://doi.org/10.1016/j.ijmecsci.2023.108622.
  • 16. Lu JJ, Yan G, Qi WH, Yan H, Shi JW, Chen A, i in. Load-adaptive quasi-zero stiffness vibration isolation via dual electromagnetic stiffness regulation. Journal of Sound and Vibration 2023; 567: 118059. https://doi.org/10.1016/j.jsv.2023.118059.
  • 17. Palacio O, Malfait WJ, Michel S, Barbezat M, Mazrouei-Sebdani Z. Vibration and structure-borne sound isolation properties of silica aerogels. Construction and Building Materials 2023; 399: 132568. https://doi.org/10.1016/j.conbuildmat.2023.132568.
  • 18. Palmić TB, Slavič J. Single-process 3D-printed stacked dielectric actuator. International Journal of Mechanical Sciences 2022; 230: 107555. https://doi.org/10.1016/j.ijmecsci.2022.107555.
  • 19. Song H, Shan X, Hou W, Wang C, Sun K, Xie T. A novel piezoelectric-based active-passive vibration isolator for low-frequency vibration system and experimental analysis of vibration isolation performance. Energy. 2023;278:127870. https://doi.org/10.1016/j.energy.2023.127870.
  • 20. Tian Y, Cao D, Chen C, Zhang X. Vibration isolation performance of a rectangular panel with high-staticlow-dynamic stiffness supports. Applied Mathematical Modelling 2023; 119: 218-38. https://doi.org/10.1016/j.apm.2023.02.027.
  • 21. Waligórski M, Batura K, Kucal K, Merkisz J. Empirical assessment of thermodynamic processes of a turbojet engine in the process values field using vibration parameters. Measurement 2020; 158: 107702. https://doi.org/10.1016/j.measurement.2020.107702.
  • 22. Waligórski M, Batura K, Kucal K, Merkisz J. Research on airplanes engines dynamic processes with modern acoustic methods for fast and accurate diagnostics and safety improvement. Measurement 2020; 154: 107460. https://doi.org/10.1016/j.measurement.2019.107460.
  • 23. Waśniewski G, Schabowicz K, Wróblewski K, Kasprzak T. Identification of physical model of resinous material filling expansion joint in reinforced concrete structures. Journal of Building Engineering 2022; 45:103505. https://doi.org/10.1016/j.jobe.2021.103505.
  • 24. Xie X, He P, Wu D, Zhang Z. Ultra-low frequency active vibration isolation in high precision equipment with electromagnetic suspension: Analysis and experiment. Precision Engineering 2023; 84: 91-101. https://doi.org/10.1016/j.precisioneng.2023.07.004.
  • 25. Yu R, Rui S, Wang X, Ma F. An integrated load-bearing and vibration-isolation supporter with decorated metamaterial absorbers. International Journal of Mechanical. Sciences 2023; 253: 108406. https://doi.org/10.1016/j.ijmecsci.2023.108406.
  • 26. Zhang C, He J, Zhou G, Wang K, Xu D, Zhou J. Compliant quasi-zero-stiffness isolator for low-frequency torsional vibration isolation. Mechanism and Machine Theory 2023; 181: 105213. https://doi.org/10.1016/j.mechmachtheory.2022.105213.
  • 27. Zhao J, Zhou G, Zhang D, Kovacic I, Zhu R, Hu H. Integrated design of a lightweight metastructure for broadband vibration isolation. International Journal of Mechanical Sciences 2023; 244: 108069. https://doi.org/10.1016/j.ijmecsci.2022.108069.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cf6dcd7-a44c-42ec-a72c-31bee3763fd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.