PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mercury capture in process gases and its mechanisms in different industries: theoretical and practical aspects, including the influence of sulfur compounds on mercury removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mathematical approach to SOFC modelling helps to reduce dependence on the experimental approach. In the current study, six different diffusion mass transfer models were compared to more accurately predict the process behavior of fuel and product diffusion for SOFC anode. The prediction accuracy of the models was extensively studied over a range of parameters. New models were included as compared to previous studies. The Knudsen diffusion phenomenon was considered in all the models. The stoichiometric flux ratio approach was used. All the models were validated against experimental data for a binary (CO-CO2) and a ternary fuel system (H2-15 H2O-Ar). For ternary system, the pressure gradient is important for pore radius below 0.6 μm and current density above 0.5 A/cm2. For binary system, the pressure gradient may be ignored. The analysis indicates that the MBFM is identified to be the best performing and versatile model under critical SOFC operating conditions such as fuel composition and cell temperature. The diffusive slip phenomenon included in MBFM is useful in SOFC operating conditions when fuel contains heavy molecules. The DGMFM is a good approximation of DGM for the binary system.
Rocznik
Strony
art. no. e5
Opis fizyczny
Bibliogr. 161 poz.
Twórcy
autor
  • AGH Doctoral School, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Department of Coal Chemistry and Environmental Sciences, Faculty of Fuel and Energy, Mickiewicza 30, 30-059, Krakow, Poland
Bibliografia
  • 1. Abad-Valle P., Lopez-Anton M.A., Diaz-Somoano M., Martinez-Tarazona M.R., 2011. The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury. Chem. Eng. J., 174(1), 86–92. DOI: 10.1016/j.cej.2011.08.053.
  • 2. Ahmaruzzaman M., 2010. A review on the utilization of fly ash. Prog. Energy Combust. Sci., 36, 327–363. DOI: 10.1016/j.pecs. 2009.11.003.
  • 3. Altaf A.R., Adewuyi Y.G., Teng H., Gang L., Abid F., 2022. Elemental mercury (Hg0) removal from coal syngas using magnetic tea-biochar: Experimental and theoretical insights. J. Environ. Sci., 122, 150–161. DOI: 10.1016/J.JES.2021.09.033.
  • 4. An M., Guo Q., Wei X., 2023. Reaction mechanism of H2S with Hg0 on CuFe2O4 oxygen carrier with oxygen vacancy structure during coal chemical looping gasification. Fuel, 333, Part 2, 126477. DOI: 10.1016/j.fuel.2022.126477.
  • 5. ASTM, 2010. ASTM C618-23e1: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual Book of ASTM Standards, C, 3–6. DOI: 10.1520/C0618.
  • 6. Auguścik-Górajek J., Nieć M., 2020. The variability of mercury content in bituminous coa seams in the coal basins in Poland. Resources, 9, 127. DOI: 10.3390/resources9110127.
  • 7. Becker C., 2018. From Langmuir to Ertl: The “Nobel” history of the surface science approach to heterogeneous catalysis. Encyclopedia of Interfacial Chemistry, 99–106. DOI: https://doi.org/10.1016/B978-0-12-409547-2.13527-9
  • 8. Białecka B., Pyka I., 2016. Rtęć w polskim węglu kamiennym do celów energetycznych i w produktach jego przeróbki. Główny Instytut Górnictwa, Katowice. Available at: https://gig.eu/sites/default/files/attachments/publikacje/monografia_19_05_2016.pdf.
  • 9. Brown B.P., Brown S.R., Senko J.M., Dillon J., Spear J.R., Magnuson T., Building F., 2012. Microbial communities associated with wet flue gas desulfurization systems. Front. Microbiol., 3. DOI: 10.3389/fmicb.2012.00412.
  • 10. Cao Q., Qian Y., Liang H., Li Z., Chen S., Yang L., Zhan Q., 2020a. Mercury forms and their transformation in pyrite under weathering. Surf. Interface Anal., 52, 283–292. DOI: 10.1002/sia.6718.
  • 11. Cao Q., Yang L., Qian Y., Liang H., 2020b. Study on mercury species in coal and pyrolysis-based mercury removal before utilization. ACS Omega, 5, 20215-20223. DOI: 10.1021/acsomega.0c01875.
  • 12. Cao Y., Duan Y., Kellie S., Li L., Xu W., Riley J.T., Pan W.P., Chu P., Mehta A.K., Carty R., 2005. Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOx burners. Energy Fuels, 19, 842–854. DOI: 10.1021/ef034107u.
  • 13. Caravati E.M., Erdman A.R., Christianson G., Nelson L.S., Woolf A.D., Booze L.L., Cobaugh D.J., Chyka P.A., Scharman E.J., Manoguerra A.S., Troutman W.G., 2008. Elemental mercury exposure: An evidence-based consensus guideline for out-of-hospital management. Clin. Toxicol., 46, 1–21. DOI: 10.1080/15563650701664731.
  • 14. Cha I.T., Roh S.W., Kim S.J., Hong H.J., Lee H.W., Lim W.T., Rhee S.K., 2013. Desulfotomaculum tongense sp. nov., a moderately thermophilic sulfate-reducing bacterium isolated from a hydrothermal vent sediment collected from the Tofua Arc in the Tonga Trench. Antonie van Leeuwenhoek, 104, 1185–1192. DOI: 10.1007/s10482-013-0040-0.
  • 15. Chang L., Zhao Y., Li H., Tian C., Zhang Y., Yu X., Zhang J., 2017. Effect of sulfite on divalent mercury reduction and re-emission in a simulated desulfurization aqueous solution. Fuel Process. Technol., 165, 138–144. DOI: 10.1016/j.fuproc.2017.05.016.
  • 16. Chen C., Liu S., Gao Y., Liu Y., 2014. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry. Sci. World J., 2014, 581724. DOI: 10.1155/2014/581724.
  • 17. Chen Z., Mannava D.P., Mathur V.K., 2006. Mercury oxidization in dielectric barrier discharge plasma system. Ind. Eng. Chem. Res., 45, 6050–6055. DOI: 10.1021/ie0603666.
  • 18. Chou C.P., Chang T.C., Chiu C.H., Hsi H.C., 2018. Mercury speciation and mass distribution of cement production process in Taiwan. Aerosol Air Qual. Res., 18, 2801–2812. DOI: 10.4209/aaqr.2018.05.0205.
  • 19. Chou C.-P., Chiu C.-H., Chang T.C., Hsi H.C., 2021. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. J. Air Waste Manage. Assoc., 71, 553–563. DOI: 10.1080/10962247.2020.1860158.
  • 20. Deng Y., Macherzyński M., 2022. The influence of contact time between Hg reach flue gas and sorbents on Hg(0) capture in two kinds of laboratory reactor. ICMGP 2022: 15th International Conference on Mercury as a Global Pollutant. 24th–29th July 2022. ID 36, 1–20.
  • 21. Dranga B.A., Lazar L., Koeser H., 2012. Oxidation catalysts for elemental mercury in flue gases – A review. Catalysts, 2, 139–170. DOI: 10.3390/catal2010139.
  • 22. Du W., Yin L., Zhuo Y., Xu Q., Zhang L., Chen C., 2014. Catalytic oxidation and adsorption of elemental mercury over CuCl2-impregnated sorbents. Ind. Eng. Chem. Res., 53, 582–591. DOI: 10.1021/ie4016073.
  • 23. Dziok T., Kołodziejska E.K., Kołodziejska E.L., 2020. Mercury content in woody biomass and its removal in the torrefaction process. Biomass Bioenergy, 143, 105832. DOI: 10.1016/j.biombioe.2020.105832.
  • 24. Fan X., Li C., Zeng G., Zhang X., Tao S., Lu P., Tan Y., Luo D., 2012. Hg0 removal from simulated flue gas over CeO2/HZSM-5. Energy Fuels, 26, 2082–2089. DOI: 10.1021/ef201739p.
  • 25. Ferreira C.A., Ni D., Rosenkrans Z.T., Cai W., 2018. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res., 11, 4955–4984. DOI: 10.1007/s12274-018-2092-y.
  • 26. Finkelman R.B., 1993. Trace and minor elements in coal. In: Engel M.H., Macko S.A. (Eds.), Organic Geochemistry. Topics in Geobiology. Springer, Boston, MA, 11, 593-607. DOI: 10.1007/978-1-4615-2890-6_28.
  • 27. Finkelman R.B., Palmer C.A., Krasnow M.R., Aruscavage P.J., Sellers G.A., Dulong F.T., 1990. Combustion and leaching behavior of elements in the argonne premium coal samples. Energy Fuels, 4, 755–766. DOI: 10.1021/ef00024a024.
  • 28. Font O., Córdoba P., Leiva C., Romeo L.M., Bolea I., Guedea I., Moreno N., Querol X., Fernandez C., Díez L.I., 2012. Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant. Fuel, 95, 272–281. DOI: 10.1016/j.fuel.2011.12.017.
  • 29. Fukuda N., Takaoka M., Doumoto S., Oshita K., Morisawa S., Mizuno T., 2011. Mercury emission and behavior in primary ferrous metal production. Atmos. Environ., 45, 3685–3691. DOI: 10.1016/j.atmosenv.2011.04.038.
  • 30. Galbreath K.C., Zygarlicke C.J., 2000. Mercury transformations in coal combustion flue gas. Fuel Process. Technol., 65, 289–310. DOI: 10.1016/S0378-3820(99)00102-2.
  • 31. Gale T.K., Lani B.W., Offen G.R., 2008. Mechanisms governing the fate of mercury in coal-fired power systems. Fuel Process. Technol., 89, 139–151. DOI: 10.1016/j.fuproc.2007.08.004.
  • 32. Gallego S., Benavides M., Tomaro M., 2002. Involvement of an antioxidant defence system in the adaptive response to heavy metal ions in Helianthus annuus L. cells. Plant Growth Regul., 36, 267–273. DOI: 10.1023/A:1016536319908.
  • 33. Gao Y., Zhang Z., Wu J., Duan L., Umar A., Sun L., Guo Z., Wang Q., 2013. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Environ. Sci. Technol., 47, 10813–10823. DOI: 10.1021/es402495h.
  • 34. Gibb W.H., Clarke F., Mehta A.K., 2000. The fate of coal mercury during combustion. Fuel Process. Technol., 65, 365–377. DOI: 10.1016/S0378-3820(99)00104-6.
  • 35. Gingerich D.B., Zhao Y., Mauter M.S., 2019. Environmentally significant shifts in trace element emissions from coal plants complying with the 1990 Clean Air Act Amendments. Energy Policy, 132, 1206–1215. DOI: 10.1016/J.ENPOL.2019.07.003.
  • 36. Gołaś J., Strugała A., 2013. Mercury as a coal combustion pollutant: monograph. Oficyna Drukarska – Jacek Chmielewski, Warsaw, 97-99.
  • 37. Gorecki J., Macherzynski M., Chmielowiec J., Borovec K., Wałeka M., Deng Y., Sarbinowski J., Pasciak G., 2022. The methods and stands for testing fixed sorbent and sorbent polymer composite materials for the removal of mercury from flue gases. Energies, 15, 8891. DOI: 10.3390/en15238891.
  • 38. Granite E.J., Pennline H.W., Hargis R.A., 2000. Novel sorbents for mercury removal from flue gas. Ind. Eng. Chem. Res., 39, 1020–1029. DOI: 10.1021/ie990758v.
  • 39. Hall B., Schager P., Lindqvist O., 1991. Chemical reactions of mercury in combustion flue gases. Water Air Soil Pollut., 56, 3–14. DOI: 10.1007/BF00342256.
  • 40. He Z., Xie Y., Wang Y., Xu J., Hu J., 2020. Removal of mercury from coal-fired flue gas and its sulfur tolerance characteristicsby Mn, Ce modified ‚-Al2O3 catalyst. J. Chem., 2020, 8702745. DOI: 10.1155/2020/8702745.
  • 41. Hower J.C., Senior C.L., Suuberg E.M., Hurt R.H., Wilcox J.L., Olson E.S., 2010. Mercury capture by native fly ash carbons in coal-fired power plants. Prog. Energy Combust. Sci., 36, 510–529. DOI: 10.1016/j.pecs.2009.12.003.
  • 42. Hisham M.W.M., Benson S.W., 1995. Thermochemistry of the deacon process. J. Phys. Chem., 99, 6194–6198. DOI: 10.1021/j100016a065.
  • 43. Hrdlicka J.A., Seames W.S., Mann M.D., Muggli D.S., Horabik C.A., 2008. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters. Environ. Sci. Technol., 42, 6677–6682. DOI: 10.1021/es8001844.
  • 44. Hsu-Kim H., Kucharzyk K.H., Zhang T., Deshusses M.A., 2013. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ. Sci. Technol., 47, 2441–2456. DOI: 10.1021/es304370g.
  • 45. Hu Y., Cheng H., Tao S., 2018. The growing importance of waste-to-energy (WTE) incineration in China’s anthropogenic mercury emissions: Emission inventories and reduction strategies. Renewable Sustainable Energy Rev., 97, 119–137. DOI: 10.1016/j.rser.2018.08.026.
  • 46. Huang Y., Liu J., Wang G., Wang Q., Zeng B., Xiao Z., Sun G., Li Z., 2022. Leachability of mercury in coal fly ash from coalfired power plants in southwest China. Front. Environ. Sci., 10, 887837. DOI: 10.3389/fenvs.2022.887837.
  • 47. Huang Z., Wei Z., Xiao X., Tang M., Li B., Ming S., Cheng X., 2019. Bio-oxidation of Elemental Mercury into Mercury Sulfide and Humic Acid-Bound Mercury by Sulfate Reduction for Hg0 Removal in Flue Gas. Environ. Sci. Technol., 53, 12923–12934. DOI: 10.1021/acs.est.9b04029.
  • 48. Kern S., Salzer F., Reinhold H., 2015. Breaking the mercury cycle for emission abatement with the “ExMercury – Splitted Preheater System”. ZKG Cement Lime Gypsum 9, 38–44.
  • 49. Kho F., Koppel D.J., von Hellfeld R., Hastings A., Gissi F., Cresswell T., Higgins S., 2022. Current understanding of the ecological risk of mercury from subsea oil and gas infrastructure to marine ecosystems. J. Hazard. Mater., 438, 129348. DOI:10.1016/j.jhazmat.2022.129348.
  • 50. Kolker A., Senior C.L., Quick J.C., 2006. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Appl. Geochem., 21, 1821–1836. DOI: 10.1016/j.apgeochem.2006.08.001.
  • 51. Krukenberg V., Harding K., Richter M., Glöckner F.O., Gruber-Vodicka H.R., Adam B., Berg J.S., Knittel K., Tegetmeyer H.E., Boetius A., Wegener G., 2016. Candidatus Desul-fofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ. Microbiol., 18, 3073–3091. DOI: 10.1111/1462-2920.13283.
  • 52. Laudal D.L., Thompson J.S., Pavlish J.H., Chu P., Srivastava R.K., Lee C.W., Kilgroe J.D., 2002. Evaluation of mercury speciation at power plants using SCR and SNCR control technologies. International Air Quality Conference III, Arlington, VA, 9–12 September 2002.
  • 53. Lee C. W., Serre S. D., Zhao Y., Hastings T.W., 2006. Study of the effect of chlorine addition on mercury oxidation by SCR catalyst under simulated subbituminous coal flue gas. Proceedings, EPA-DOE-EPRI-A&WMA Power Plant Air Pollutant Control “Mega” Symposium, Baltimore, MD, 28–31 August 2006. AWMA, Pittsburgh, PA, 13.
  • 54. Li B., Wang H., 2021. Effect of flue gas purification facilities of coal-fired power plant on mercury emission. Energy Rep., 7, 190–196. DOI: 10.1016/j.egyr.2021.01.094.
  • 55. Li G., Shen B., Li Y., Zhao B., Wang F., He C., Wang Y., Zhang M., 2015. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J. Hazard. Mater., 298, 162–169. DOI: 10.1016/j.jhazmat.2015. 05.031.
  • 56. Li G., Wu Q., Wang S., Duan Z., Su H., Zhang L., Li Z., Tang Y., Zhao M., Chen L., Liu K., Zhang Y., 2018. Improving flue gas mercury removal in waste incinerators by optimization of carbon injection rate. Environ. Sci. Technol., 52, 1940–1945. DOI: 10.1021/acs.est.7b05560.
  • 57. Li G., Wu Q., Wang S., Li Z., Liang H., Tang Y., Zhao M., Chen L., Liu K., Wang F., 2017. The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China. Chem. Eng. J., 326, 561–569. DOI: 10.1016/j.cej.2017.05.099.
  • 58. Li X., Li Z., Fu C., Tang L., Chen J., Wu T., Lin C.J., Feng X., Fu X., 2019. Fate of mercury in two CFB utility boilers with different fueled coals and air pollution control devices. Fuel, 251, 651–659. DOI: 10.1016/j.fuel.2019.04.071.
  • 59. Li Y., Yang D., Zhou X., Dong L., Sou L., Sun W., 2022a. Heavy metal migration characteristics of co-combustion between sewage sludge and high alkaline coal on circulating fluidized bed. J. Therm. Sci., 31, 2178–2188. DOI: 10.1007/s11630-022-1695-5.
  • 60. Li Z., Huang Y., Li X., Wang G., Wang Q., Sun G., Feng X., 2022b. Substance Flow Analysis of Zinc in Two Preheater-Precalciner Cement Plants and the Associated Atmospheric Emissions. Atmosphere, 13, 128. DOI: 10.3390/atmos13010128.
  • 61. Ling L., Fan M., Wang B., Zhang R., 2015. Application of computational chemistry in understanding the mechanisms of mercury removal technologies: A review. Energy Environ. Sci., 8, 3109–3133. DOI: 10.1039/c5ee02255j.
  • 62. Liu D., Zhang Z., Wu J., Li C., 2020. Copper sulfide microsphere for Hg0 capture from flue gas at low temperature. Mater. Today Commun., 25, 101188. DOI: 10.1016/j.mtcomm.2020.101188.
  • 63. Liu S., Chen J., Cao Y., Yang H., Chen C., Jia W., 2019. Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China. J. Air Waste Manage. Assoc., 69, 234–245. DOI: 10.1080/10962247.2018.1535461.
  • 64. Liu S., Liu W., Jiao F., Qin W., Yang C., 2021. Production and resource utilization of flue gas desulfurized gypsum in China – A review. Environ. Pollut., 288, 117799. DOI: 10.1016/j.envpol.2021.117799.
  • 65. Liu X., Wang S., Zhang L., Wu Y., Duan L., Hao J., 2013. Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China. Fuel, 111, 621–627. DOI: 10.1016/j.fuel.2013.03.052.
  • 66. Luo G., Yao H., Xu M., Gupta R., Xu Z., 2011. Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis. Proc. Combust. Inst., 33, 2763–2769. DOI: 10.1016/j.proci.2010.06.108.
  • 67. Luo Z., Hu C., Zhou J., Cen K., 2006. Stability of mercury on three activated carbon sorbents. Fuel Process. Technol., 87, 679–685. DOI: 10.1016/j.fuproc.2005.10.005.
  • 68. Macherzynski M., 2018. Reduction of mercury emission to the environment – selected problems and examples of laboratory and industrial tests. ydawnictwa AGH, 60–62.
  • 69. Maiti D., Ansari I., Rather M.A., Deepa A., 2019. Comprehensive review on wastewater discharged from the coal-related industries – characteristics and treatment strategies. Water Sci. Technol., 79, 2023–2035. DOI: 10.2166/wst.2019.195.
  • 70. Marcantonio V., Bocci E., Ouweltjes J.P., del Zotto L., Monarca D., 2020. Evaluation of sorbents for high temperaturę removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus. Int. J. Hydrogen Energy, 45, 6651–6662. DOI: 10.1016/j.ijhydene.2019.12.142.
  • 71. Martin G., Sharma S., Ryan W., Srinivasan N.K., Senko J.M., 2021. Identification of microbiological activities in wet flue gas desulfurization systems. Front. Microbiol., 12, 675628. DOI: 10.3389/fmicb.2021.675628.
  • 72. Masoomi I., Kamata H., Yukimura A., Ohtsubo K., Schmid M.O., Scheffknecht G., 2020. Investigation on the behavior of mercury across the flue gas treatment of coal combustion power plants using a lab-scale firing system. Fuel Process. Technol., 201, 106340. DOI: 10.1016/j.fuproc.2020.106340.
  • 73. Mathebula M.W., Panichev N., Mandiwana K., 2020. Determination of mercury thermospecies in South African coals in the enhancement of mercury removal by pre-combustion technologies. Sci. Rep., 10, 19282. DOI: 10.1038/s41598-020-76453-z.
  • 74. Merdes A.C., Keener T.C., Khang S.J., Jenkins R.G., 1998. Investigation into the fate of mercury in bituminous coal during mild pyrolysis. Fuel, 77, 1783–1792. DOI: 10.1016/S0016-2361(98)00087-8.
  • 75. Michalska A., Smolinski A., Koteras A., 2022. Analysis of mercury content inside mining waste dump case study in the Upper Silesia in Poland. Arch. Min. Sci., 67, 95–106. DOI: 10.24425/ams.2022.140704.
  • 76. Mlakar T.L., Horvat M., Vuk T., Stergaršek A., Kotnik J., Tratnik J., Fajon V., 2010. Mercury species, mass flows and processes in a cement plant. Fuel, 89, 1936–1945. DOI: 10.1016/j.fuel.2010.01.009.
  • 77. Mohee F., 2013. A review of the effects and control of the mercury emissions from cement industry. EIC – Climate Change Technology Conference 2013. Montreal, Canada, May 2013.
  • 78. Mojammal A.H.M., Back S.K., Seo Y.C., Kim J.H., 2019. Mass balance and behavior of mercury in oil refinery facilities. Atmos. Pollut. Res., 10, 145–151. DOI: 10.1016/j.apr.2018.07.002.
  • 79. Mukherjee A.B., Zevenhoven R., Bhattacharya P., Sajwan K.S., Kikuchi R., 2008. Mercury flow via coal and coal utilization by-products: A global perspective. Resour. Conserv. Recycl., 52, 571–591. DOI: 10.1016/j.resconrec.2007.09.002.
  • 80. Neveux T., Hagi H., le Moullec Y., 2014. Performance simulation of full-scale wet flue gas desulfurization for oxy-coal combustion. Energy Procedia, 63, 463–470. DOI: 10.1016/j.egypro.2014.11.049.
  • 81. Niu Q., Luo J., Sun S., Chen Q., Lu J., 2015. Effects of flue gas components on the oxidation of gaseous Hg0 by dielectric barrier discharge plasma. Fuel, 150, 619–624. DOI: 10.1016/j.fuel.2015.02.043.
  • 82. Okonji S.O., Achari G., Pernitsky D., 2021. Environmental impacts of selenium contamination: A review on current-issues and remediation strategies in an aqueous system. Water, 13, 1473. DOI: 10.3390/w13111473.
  • 83. Okońska A., Uruski Ł., Górecki J., Gołaś J., 2013. Metodyka oznaczania zawartości rtęci całkowitej w węglach energetycznych. Gospodarka Surowcami Mineralnymi, 29, 39–49. DOI: 10.2478/gospo-2013-0019.
  • 84. Omine N., Romero C.E., Kikkawa H., Wu S., Eswaran S., 2012. Study of elemental mercury re-emission in a simulated wet scrubber. Fuel, 91, 93–101. DOI: 10.1016/j.fuel.2011.06.018.
  • 85. Osipova N.A., Tkacheva E.V., Arbuzov S.I., Yazikov E.G., Matveenko I.A., 2019. Mercury in coals and soils from coal-mining regions. Solid Fuel Chem., 53, 411–417. DOI: 10.3103/S036152191907005X.
  • 86. Park K.S., Seo Y.C., Lee S.J., Lee J.H., 2008. Emission and speciation of mercury from various combustion sources. Powder Technol., 180, 151–156. DOI: 10.1016/j.powtec.2007.03.006.
  • 87. Pavlish J.H., Sondreal E.A., Mann M.D., Olson E.S., Galbreath K.C., Laudal D.L., Benson S.A., 2003. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol., 82,89-165. DOI: 10.1016/S0378-3820(03)00059-6.
  • 88. Pilar L., Borovec K., Szeliga Z., Górecki J., 2021. Mercury emission from three lignite-fired power plants in the Czech Republic. Fuel Process. Technol., 212, 106628. DOI: 10.1016/j.fuproc.2020.106628.
  • 89. Presto A.A., Granite E.J., 2008. Noble metal catalysts for mercury oxidation in utility flue gas. Platinum Met. Rev., 52, 144–154. DOI: 10.1595/147106708X319256.
  • 90. Prins R., 2018. Eley–Rideal, the other mechanism. Top. Catal., 61, 714–721. DOI: 10.1007/s11244-018-0948-8.
  • 91. Puig-Arnavat M., Bruno J.C., Coronas A., 2010. Review and analysis of biomass gasification models. Renewable Sustainable Energy Rev., 14, 2841–2851. DOI: 10.1016/j.rser.2010.07.030.
  • 92. Qiao Y., Xu M., Yao H., Wang C., Gong X., Chen H., Li L., 2007. Modeling of homogeneous tin speciation using detailed chemical kinetics. Asia-Pac. J. Chem. Eng., 2, 158–164. DOI: 10.1002/apj.35.
  • 93. Rahim D.A., Fang W., Wibowo H., Hantoko D., Susanto H., Yoshikawa K., Zhong Y., Yan M., 2023. Review of high temperature H2S removal from syngas: Perspectives on downstream process integration. Chem. Eng. Process. Process Intensif., 183, 109258. DOI: 10.1016/j.cep.2022.109258.
  • 94. Raj D., Chowdhury A., Maiti S.K., 2017. Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Hum. Ecol. Risk Assess.: Int. J., 23, 767–787. DOI: 10.1080/10807039.2016.1278519.
  • 95. Remus R., Aguado-Monsonet M.A., Roudier S., Delgado Sancho L., 2013. Best available techniques (BAT) reference document for iron and steel production. Industrial emissions Directive 2010/75/EU: integrated pollution prevention and control. Joint Research Centre, Institute for Prospective Technological Studies, Publications Office. https://data.europa.eu/doi/10.2791/97469.
  • 96. Ren W., Yang L., Cao Q., Liang C., 2021. Concentration, distribution and occurrence of mercury in Chinese coals. E3S Web Conf., 290, 03003. DOI: 10.1051/e3sconf/202129003003.
  • 97. Rumayor M., Lopez-Anton M.A., Díaz-Somoano M., Martínez-Tarazona M.R., 2015. A new approach to mercury speciation in solids using a thermal desorption technique. Fuel, 160, 525–530. DOI: 10.1016/j.fuel.2015.08.028.
  • 98. Schneider L., Rose N.L., Myllyvirta L., Haberle S., Lintern A., Yuan J., Sinclair D., Holley C., Zawadzki A., Sun R., 2021. Mercury atmospheric emission, deposition and isotopic fingerprinting from major coal-fired power plants in Australia: Insights from palaeo-environmental analysis from sediment cores. Environ. Pollut., 287, 117596. DOI: 10.1016/j.envpol.2021.117596.
  • 99. Senior C.L., Sarofim A.F., Zeng T., Helble J.J., Mamani-Paco R., 2000a. Gas-phase transformations of mercury in coal-fired power plants. Fuel Process. Technol., 63, 197–213. DOI: 10. 1016/S0378-3820(99)00097-1 .
  • 100. Senior C., Linjewile T., 2003. Oxidation of mercury across SCR catalysts in coal-fired power plants burning low rank fuels. United Sates. DOI: 10.2172/822762.
  • 101. Senior C., Granite E., Linak W., Seames W., 2020b. Chemistry of Trace inorganic elements in coal combustion systems: a century of discovery. Energy Fuels, 34, 15141–15168. DOI: 10.1021/acs. energyfuels.0c02375.
  • 102. Sliger R.N., Kramlich J.C., Marinov N.M., 2000. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species. Fuel Process. Technol., 65-66, 423–438. DOI: 10.1016/S0378-3820(99)00108-3.
  • 103. Srivastava R.K., Hutson N., Martin B., Princiotta F., Staudt J., 2006. Control of mercury emissions from coal-fired electric utility boilers. Environ. Sci. Technol., 40, 1385–1393. DOI: 10. 1021/es062639u.
  • 104. Stolle R., Koeser H., Gutberlet H., 2014. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants. Appl. Catal., B, 144, 486–497. DOI: 10.1016/j.apcatb.2013.07.040.
  • 105. Su S., Liu L., Wang L., Syed-Hassan S.S.A., Kong F., Hu S., Wang Y., Jiang L., Xu K., Zhang A., Xiang J., 2017. Mass flow analysis of mercury transformation and effect of seawater flue gas desulfurization on mercury removal in a full-scale coal-fired power plant. Energy Fuels, 31, 11109–11116. DOI: 10.1021/acs.energyfuels.7b02029.
  • 106. Su Y., Liu X., Teng Y., Zhang K., 2021. Mercury speciation in various coals based on sequential chemical extraction and thermal analysis methods. Energies, 14, 2361. DOI: 10.3390/en14092361.
  • 107. Sui Z., Zhang Y., Li W., Orndorff W., Cao Y., Pan W.-P., 2015. Partitioning effect of mercury content and speciation in gypsum slurry as a function of time. J. Therm. Anal. Calorim., 119, 1611–1618. DOI: 10.1007/s10973-015-4403-9.
  • 108. Sultanguzin I.A., Fedyukhin A.V., Zakharenkov E.A., Yavorovsky Y.V., Voloshenko E.V., Kurzanov S.Y., Stepanova T.A.,
  • 109. Tumanovsky V.A., Ippolitov V.A., 2020. An Analysis of the prospects for coal-fired thermal power station reconstruction on the basis of coal gasification and a combined-cycle unit. Therm. Eng., 67, 451–460. DOI: 10.1134/S004060152007006X.
  • 110. Takahashi F., Shimaoka T., Kida A., 2012. Atmospheric mercury emissions from waste combustions measured by continuous monitoring devices. J. Air Waste Manage. Assoc., 62, 686–695. DOI: 10.1080/10962247.2012.659329.
  • 111. Tang K., Baskaran V., Nemati M., 2009. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J., 44, 73–94. DOI: 10.1016/j.bej.2008.12.011.
  • 112. UN Environment, 2019. Global mercury assessment 2018.
  • 113. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland.
  • 114. Uruski L., Gorecki J., Macherzynski M., Dziok T., Golas J., 2015. The ability of Polish coals to release mercury in the process of thermal treatment. Fuel Process. Technol., 140, 12–20. DOI: 10.1016/j.fuproc.2015.08.005.
  • 115. Villarini M., Marcantonio V., Colantoni A., Bocci E., 2019. Sensitivity analysis of different parameters on the performance of a CHP internal combustion engine system fed by a biomass waste gasifier. Energies, 12, 688. DOI: 10.3390/en12040688.
  • 116. Wang F., Wang S., Zhang L., Yang H., Gao W., Wu Q., Hao J., 2016. Mercury mass flow in iron and steel production proces and its implications for mercury emission control. J. Environ. Sci., 43, 293–301. DOI: 10.1016/j.jes.2015.07.019.
  • 117. Wang F., Wang S., Zhang L., Yang H., Wu Q., Hao J., 2014. Mercury enrichment and its effects on atmospheric emissions in cement plants of China. Atmos. Environ., 92, 421–428. DOI: 10.1016/j.atmosenv.2014.04.029.
  • 118. Wang J., Fang Y., Wang H., Bai G., Qin W., Zhang J., 2022. Simultaneous removal of Hg0 and H2S over a regenerable Fe2O3/AC catalyst. Atmosphere, 13, 425. DOI: 10.3390/at-mos13030425.
  • 119. Wang S., 2020a. Near-zero air pollutant emission technologies and applications for clean coal-fired power. Engineering, 6, 1408–1422. DOI: 10.1016/j.eng.2019.10.018.
  • 120. Wang S.X., Zhang L., Li G.H., Wu Y., Hao J.M., Pirrone N., Sprovieri F., Ancora M.P., 2010a. Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. Phys., 10, 1183–1192. DOI: 10.5194/acp-10-1183-2010.
  • 121. Wang Y., Duan Y., Yang L., Zhao C., Shen X., Zhang M.,
  • 122. Zhuo Y., Chen C., 2009. Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Process. Technol., 90, 643–651. DOI: 10.1016/j.fuproc. 2008.10.013.
  • 123. Wang Z.H., Jiang S.D., Zhu Y.Q., Zhou J.S., Zhou J.H., Li Z.S., Cen K.F., 2010b. Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment. Fuel Process. Technol., 91, 1395–1400. DOI: 10.1016/j.fuproc.2010.05.012.
  • 124. Wang Z., Liu J., Yang Y., Miao S., Shen F., 2018. Effect of the mechanism of H2S on elemental mercury removal using the MnO2 sorbent during coal gasification. Energy Fuels, 32, 4453–4460. DOI: 10.1021/acs.energyfuels.7b03092.
  • 125. Wang Z., Liu J., Yang Y., Yu Y., Yan X., Zhang Z., 2020b. AMn2O4 (A=Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. J. Hazard. Mater., 388, 121738. DOI: 10.1016/j.jhazmat.2019.121738.
  • 126. Wdowin M., Macherzyński M., Panek R., Górecki J., Franus W., 2015. Investigation of the sorption of mercury vapour from exhaust gas by an Ag-X zeolite. Clay Miner., 50, 31–40. DOI:10.1180/claymin.2015.050.1.04.
  • 127. Wdowin M., Macherzyński M., Panek R., Wałęka M., Górecki J., 2020. Analysis of selected mineral and waste sorbents for the capture of elemental mercury from exhaust gases. Mineralogia, 51, 17–35. DOI: 10.2478/mipo-2020-0003
  • 128. Wiatros-Motyka M.M., Sun C.G., Stevens L.A., Snape C.E., 2013. High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel, 109, 559–562. DOI: 10.1016/j.fuel.2013.03.019.
  • 129. Wierzchowski K., Chećko J., Pyka I., 2017. Variability of mercury content in coal matter from coal seams of the upper Silesia coal basin. Arch. Min. Sci., 62, 843–856. DOI: 10.1515/amsc-2017-0058.
  • 130. Wu C.-L., Cao Y., He C.-C., Dong Z.-B., Pan W.-P., 2010. Study of elemental mercury re-emission through a lab-simulated scrubber. Fuel, 89, 2072–2080. DOI: 10.1016/j.fuel. 2009.11.045.
  • 131. Wu J., Cao Y., Pan W., Shen M., Ren J., Du Y., He P., Wang D., Xu J., Wu A., Li S., Lu P., Pan W.P., 2008. Evaluation of mercury sorbents in a lab-scale multiphase flow reactor, a pilot- scale slipstream reactor and full-scale power plant. Chem. Eng. Sci., 63, 782–790. DOI: 10.1016/j.ces.2007.09.041.
  • 132. Wu X., Duan Y., Meng J., Geng X., Shen A., Hu J., 2021. Experimental study on the mercury removal of a H2S-modified Fe2O3 adsorbent. Ind. Eng. Chem. Res., 60, 17429–17438. DOI: 10.1021/acs.iecr.1c01998.
  • 133. Wu Y. W., Ali Z., Lu Q., Liu J., Xu M. X., Zhao L., Yang Y.P., 2019. Effect of WO3 doping on the mechanism of mercury oxidation by HCl over V2O5/TiO2 (001) surface: Periodic density functional theory study. Appl. Surf. Sci., 487, 369–378. DOI: 10.1016/J.APSUSC.2019.05.132.
  • 134. Xie Y., Li C., Zhao L., Zhang J., Zeng G., Zhang X., Zhang W., Tao S., 2015. Experimental study on Hg0 removal from flue gas over columnar MnOx -CeO2/activated coke. Appl. Surf. Sci., 333, 59–67. DOI: 10.1016/j.apsusc.2015.01.234.
  • 135. Xing X., Zhang X., Tang J., Cui L., Dong Y., 2022. Removal of gaseous elemental mercury from simulated syngas
  • 136. over Fe2O3/TiO2 sorbents. Fuel, 311, 122614. DOI: 10.1016/j.fuel.2021.122614.
  • 137. Xu J., Zhang A., Zhou Z., Wang C., Deng L., Liu L., Xia H., Xu M., 2021. Elemental mercury removal from flue gas over silver-loaded CuS-wrapped Fe3O4 sorbent. Energy Fuels, 35, 13975-13983. DOI: 10.1021/acs.energyfuels.1c02150
  • 138. Xu Y.N., Chen Y., 2020. Advances in heavy metal removal by sulfate-reducing bacteria. Water Sci. Technol., 81, 1797–1827. DOI: 10.2166/wst.2020.227.
  • 139. Xue L., Liu T., Guo X., Zheng C., 2015. Hg oxidation reaction mechanism on Fe2O3 with H2S: Comparison between theory and experiments. Proc. Combust. Inst., 35, 2867–2874. DOI:10.1016/j.proci.2014.06.065
  • 140. Yan J., Yuan W., Liu J., Ye W., Lin J., Xie J., Huang X., Gao S., Xie J., Liu S., Chen W., Zhang H., 2019. An integrated process of chemical precipitation and sulfate reduction for treatment of flue gas desulphurization wastewater from coal-fired power plant. J. Cleaner Prod., 228, 63–72. DOI:10.1016/j.jclepro.2019.04.227.
  • 141. Yang J., Li Q., Zhu W., Qu W., Li M., Xu Z., Yang Z., Liu H., Li H., 2021a. Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas. Fuel, 290, 120049. DOI: 10.1016/j.fuel.2020.120049.
  • 142. Yang Y., Liu J., Shen F., Zhao L., Wang Z., Long Y., 2016. Kinetic study of heterogeneous mercury oxidation by HCl on fly ash surface in coal-fired flue gas. Combust. Flame, 168, 1–9. DOI: 10.1016/j.combustflame.2016.03.022.
  • 143. Yang Y., Liu J., Wang Z., Yu Y., 2021b. Reaction mechanism of elemental mercury oxidation to HgSO4 during SO2=SO3 conversion over V2O5/TiO2 catalyst. Proc. Combust. Inst., 38, 4317–4325. DOI: 10.1016/j.proci.2020.10.007.
  • 144. Yang Y., Zheng C., Su Q., Wang Y., Lu Y., Zhang Y., Zhu Y., 2021c. SOx removal and emission characteristics of WFGD system applied in ultra-low emission coal-fired power plants. Case Stud. Therm. Eng., 28, 101562. DOI: 10.1016/j.csite.2021.101562.
  • 145. Yue T., Wang F., Han B.J., Zuo P.L., Zhang F., 2013. Analysis on mercury emission and control technology of typical industries in China. Appl. Mech. Mater., 295–298, 859–871. DOI:10.4028/www.scientific.net/AMM.295-298.859.
  • 146. Zhang A., Zheng W., Song J., Hu S., Liu Z., Xiang J., 2014. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chem. Eng. J., 236, 29–38. DOI: 10.1016/J.CEJ.2013.09.060.
  • 147. Zhang J., Li L., Liu J., 2017a. Effects of irrigation and water content of packing materials on a thermophilic biofilter for SO2 removal: Performance, oxygen distribution and microbial population. Biochem. Eng. J., 118, 105–112. DOI: 10.1016/j.bej.2016.11.015.
  • 148. Zhang L., Wang S., Wang L., Wu Y., Duan L., Wu Q., Wang F., Yang M., Yang H., Hao J., Liu X., 2015. Updated emission inventories for speciated atmospheric mercury from anthro-pogenic sources in China. Environ. Sci. Technol., 49, 3185–3194. DOI: 10.1021/es504840m.
  • 149. Zhang L., Wang S., Wu Q., Wang F., Lin C.J., Zhang L., Hui M., Yang M., Su H., Hao J., 2016. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmos. Chem. Phys., 16, 2417–2433. DOI:10.5194/acp-16-2417-2016
  • 150. Zhang Q., Mei J., Sun P., Zhao H., Guo Y., Yang S., 2020. Mechanism of elemental mercury oxidation over copper-based oxide catalysts: kinetics and transient reaction studies. Ind. Eng. Chem. Res., 59, 61–70. DOI: 10.1021/acs.iecr.9b04806.
  • 151. Zhang S., Díaz-Somoano M., Zhao Y., Yang J., Zhang J., 2019. Research on the mechanism of elemental mercury removal over Mn-based SCR catalysts by a developed Hg-TPD method. Energy Fuels, 33, 2467-2476. DOI: 10.1021/acs.energyfuels.8b04424.
  • 152. Zhang Y., Yang J., Yu X., Sun P., Zhao Y., Zhang J., Chen G., Yao H., Zheng C., 2017b. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices. Fuel Process. Technol., 158, 272–280. DOI: 10.1016/j.fuproc.2017.01.020.
  • 153. Zhao L., Li C., Zhang X., Zeng G., Zhang J., Xie Y., 2015. A review on oxidation of element mercury from coal-fired flue gas with selective catalytic reduction catalysts. Catal. Sci. Technol., 5, 3459–3472. DOI: 10.1039/C5CY00219B.
  • 154. Zhao S., Duan Y., Yao T., Liu M., Lu J., Tan H., Wang X., Wu L., 2017. Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant. Fuel, 199, 653–661. DOI: 10.1016/j.fuel.2017.03.038.
  • 155. Zhao S., Pudasainee D., Duan Y., Gupta R., Liu M., Lu J., 2019a. A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Prog. Energy Combust. Sci., 73, 26–64. DOI: 10.1016/j.pecs.2019.02.001.
  • 156. Zhao S., Sun C., Zhang Y., Jiao T., Zhang W., Liang P., Zhang H., 2019b. Determination of mercury occurrence and thermal stability in high ash bituminous coal based on sink- float and sequential chemical extraction method. Fuel, 253, 571–579. DOI: 10.1016/j.fuel.2019.05.054.
  • 157. Zheng S., Shi Y., Wang Z., Wang P., Liu G., Zhou H., 2021. Development of new technology for coal gasification purification and research on the formation mechanism of pollutants. Int. J. Coal Sci. Technol., 8(3), 335–348. DOI: 10.1007/s40789-021-00420-w.
  • 158. Zhou Q., Duan Y.F., Zhao S.L., Zhu C., She M., Zhang J., Wang S.Q., 2015a. Modeling and experimental studies of induct mercury capture by activated carbon injection in an entrained flow reactor. Fuel Process. Technol., 140, 304–311. DOI: 10.1016/j.fuproc.2015.08.018.
  • 159. Zhou Y., Yang J., Zhang Y., Zhang Y., Yu X., Zhao Y., Zhang J., Zheng C., 2019. Role of SO3 in elemental mercury removal by magnetic biochar. Energy Fuels, 33, 11446–11453. DOI: 10. 1021/acs.energyfuels.9b02567.
  • 160. Zhou Z.J., Liu X.W., Zhao B., Chen Z.G., Shao H.Z., Wang L.L, Xu M.H., 2015b. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants. Fuel Process. Technol., 131, 99–108. DOI: 10.1016/j.fuproc.2014.11.014.
  • 161. Zulaikhah S.T., Wahyuwibowo J., Pratama A.A., 2020. Mercury and its effect on human health: a review of the literature. IJPHS, 9, 103–114. DOI: 10.11591/ijphs.v9i2.20416
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cf6bd7e-4d93-448b-b36d-007640cd0e8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.