PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Financial optimisation of the scheduling for the multi-stage project

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper analyses the problem of discounted cash flow maximising for the resource-constrained project scheduling from the project contractor’s perspective. Financial optimisation for the multi-stage project is considered. Cash outflows are the contactor’s expenses related to activity execution. Cash inflows are the client’s payments for the completed milestones. To solve the problem, the procedure of backward scheduling taking into account contractual milestones is proposed. The effectiveness of this procedure, as used to generate solutions for the simulated annealing algorithm, is verified with use of standard test instances with additionally defined cash flows and contractual milestones.
Rocznik
Strony
899--908
Opis fizyczny
Bibliogr. 50 poz., rys., wykr., tab.
Twórcy
autor
  • State School of Higher Education of Biala Podlaska, Poland
  • AGH University of Technology of Cracow, Poland
Bibliografia
  • [1] P. Brucker, A. Drexl, R. Mohring, K. Neumann, and E. Pesch, “Resource-constrained project scheduling: Notation, classification, models, and methods”, Eur. J. Oper. Res.,112(1), 3‒41 (1999).
  • [2] S. Hartmann and D. Briskorn, “A survey of variants and extensions of the resource-constrained project scheduling problem”, Eur. J. Oper. Res., 207(1), 1‑14 (2012).
  • [3] R. Kolisch and R. Padman, “An integrated survey of deterministic project scheduling”, OMEGA, 29, 249‒272 (2001).
  • [4] A.H. Russell, “Cash flows in networks”, Manag. Sci., 16, 357‒373 (1970).
  • [5] D.E. Smith-Daniels, R. Padman, and V.L. Smith-Daniels, “Heuristic scheduling of capital constrained projects”, J. Oper. Manag., 14(3), 241‒254 (1996).
  • [6] A. Fink and J. Homberger, “An ant-based coordination mechanism for resource-constrained project scheduling with multiple agents and cash flow objectives”, Flex. Serv. Manuf. J., 25, 2013, 94‒121 (2013).
  • [7] Y. Khoshjahan, A. Najafi, and B. Nadjafi, “Resource constrained project scheduling problem with discounted earliness-tardiness penalties: Mathematical modeling and solving procedure”, Comput. Ind. Eng., 66, 293‒300 (2013).
  • [8] M. Klimek and P. Łebkowski, Scheduling of a Project Settled by Milestones, AGH, Cracow, 2015, [in Polish].
  • [9] M. Klimek and P. Łebkowski, “Robustness of schedules for project scheduling problem with cash flow optimisation”, Bull. Pol. Ac.: Tech., 61(4), 1005‒1015 (2013).
  • [10] M. Klimek and P. Łebkowski, “Proactive project scheduling with cash flow maximisation”, Selected Conference Proceedings, MANUFACTURING, Poznań, 2014, 72‒86 (2016).
  • [11] M. Klimek and P. Łebkowski, “Heuristics for project scheduling with discounted cash flows optimisation”, Bull. Pol. Ac.: Tech., 63(3), 613‒622 (2015).
  • [12] P. Leyman and M. Vanhoucke, “Payment models and net present value optimization for resource-constrained project scheduling”, Comput. Ind. Eng., 91, 139‒153 (2016).
  • [13] S.S. Liu and C.J. Wang, “Resource-constrained construction project scheduling model for profit maximization considering cash flow”, Autom. Constr., 17(8), 966‒974 (2008).
  • [14] M. Mika, G. Waligóra, and J. Węglarz, “Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models”, Eur. J. Oper. Res., 164(3), 639‒668 (2005).
  • [15] T. Selle and J. Zimmermann, “A bidirectional heuristic for maximizing the net present value of large-scale projects subject to limited resources”, Nav. Res. Logist., 50(2), 130‒148 (2003).
  • [16] D. Thiruvady, M. Wallace, H. Gu, and A. Schutt, “A Lagrangian relaxation and ACO hybrid for resource constrained project scheduling with discounted cash flows”, J. Heuristics, 20, 643‒676 (2014).
  • [17] G. Ulusoy, E. Sivrikaya-Serifoglu, and S. Sahin, “Four payment models for the multi-mode resource constrained project scheduling problem with discounted cash flows”, Ann. Oper. Res., 102, 237‒261 (2001).
  • [18] M. Vanhoucke, “A scatter search procedure for maximizing the net present value of a resource-constrained project with fixed activity cash flows”, Work. Paper 2006/417, Gent, 1‒23 (2006).
  • [19] M. Vanhoucke, E. Demeulemeester, and W. Herroelen, “On maximizing the net present value of a project under renewable resource constraints”, Manag. Sci., 47:1113‒1121 (2001).
  • [20] M. Vanhoucke, E. Demeulemeester, and W. Herroelen, “Maximizing the net present value of a project with linear time-dependent cash flows”, Int. J. Prod. Res., 39(14), 3159‒3181 (2001).
  • [21] W. Herroelen, B.D. Reyck, and E. Demeulemeester, “Project network models with discounted cash flows: A guided tour through recent developments”, Eur. J. Oper. Res., 100, 97‒121 (1997).
  • [22] F. Bahrami and G. Moslehi, “Study of payment scheduling problem to achieve client-contractor agreement”, Int. J. Adv. Manuf. Tech., 64(1), 497‒511 (2013).
  • [23] N. Dayanand and R. Padman, “Project contracts and payment schedules: The client’s problem”, Manag. Sci., 47, 1654‒1667 (2001).
  • [24] N. Dayanand and R. Padman, “On modelling payments in projects”, J. Oper. Res. Soc., 48, 906‒918 (1997).
  • [25] G. Ulusoy and L. Özdamar, “A heuristic scheduling algorithm for improving the duration and net present value of a project”, Int. J. Oper. Prod. Manag., 15, 89‒98 (1995).
  • [26] G. Ulusoy and S. Cebelli, “An equitable approach to the payment scheduling problem in project management”, Eur. J. Oper. Res., 127(2), 262‒278 (2000).
  • [27] Z. He and Y. Xu, “Multi-mode project payment scheduling problems with bonus penalty structure”, Eur. J. Oper. Res., 189, 1191‒1207 (2008).
  • [28] Z. He, N. Wang, T. Jia, and Y. Xu, “Simulated annealing and tabu search for multimode project payment scheduling”, Eur. J. Oper. Res., 198(3), 688‒696 (2009).
  • [29] E. Goldratt, “The goal”, New York: North River Press, (1992).
  • [30] E. Goldratt, “Critical chain”, Great Barrington: The North River Press, (1997).
  • [31] M. Ranjbar, “An optimal NPV project scheduling with fixed work content and payment on milestones”, Int. J. Ind. Eng. Prod. Res., 22(3), 181‒186 (2011).
  • [32] R. Kolisch and A. Sprecher, “PSPLIB – a project scheduling library”, Eur. J. Oper. Res., 96, 205‒216 (1997).
  • [33] R. Kolisch, “Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation”, Eur. J. Oper. Res., 90, 320‒333 (1996).
  • [34] S. Baroum and J. Patterson, “The development of cash flow weight procedures for maximizing the net present value of a project”, J. Oper. Manag., 14(3), 209‒227 (1996).
  • [35] J.P. Pinder and A.S. Marucheck, “Using discounted cash flow heuristics to improve project net present value”, J. Oper. Manag., 14, 229‒240 (1996).
  • [36] C. Schwindt, J. Zimmermann, “A steepest ascent approach to maximizing the net present value of projects”, Math. Methods Oper. Res., 53, 435‒450 (2001).
  • [37] J. Goncalves, M. Resende, and J. Mendes J., “A biased random- key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem”, J. Heuristics, 17(5), 467‒486 (2011).
  • [38] R.K.-Y. Li and J. Willis, “An iterative scheduling technique for resource-constrained project scheduling”, Eur. J. Oper. Res., 56, 370‒379 (1992).
  • [39] P. Tormos and A. Lova, “A competitive heuristic solution technique for resource-constrained project scheduling”, Ann. Oper. Res., 102, 65‒81 (2001).
  • [40] P. Tormos and A. Lova, “An efficient multi-pass heuristic for project scheduling with constrained resources”, Int. J. Prod. Res., 41(5), 1071‒1086 (2003).
  • [41] V. Valls, F. Ballestin, and S. Quintanilla S., “Justification and RCPSP: a technique that pays”, Eur. J. Oper. Res., 165(2), 375‒86 (2005).
  • [42] V. Valls, F. Ballestin, and S. Quintanilla S., “Justification technique generalisations”, In: J. Józefowska and J. Węglarz (eds.): Perspectives in Modern Project Scheduling, Springer, Berlin, 205‑223 (2006).
  • [43] V. Valls, F. Ballestin, and S. Quintanilla S., “A hybrid genetic algorithm for the RCPSP”, Eur. J. Oper. Res., 185(2), pp. 495–508 (2008).
  • [44] J.D. Wiest, “Some properties of schedules for large projects with limited resources”, Oper. Res., 12 (3), 395‒418 (1964).
  • [45] J. Józefowska and J. Węglarz (eds.), Perspectives in modern project scheduling, Springer, Berlin, 2006.
  • [46] J. Błażewicz, J.K. Lenstra, and A.R. Kan, “Scheduling subject to resource constraints – classification and complexity”, Discret. Appl. Math., 5, 11‒24 (1983).
  • [47] S. Hartmann and R. Kolisch, “Experimental evaluation of stateof- the-art heuristics for the resource-constrained project scheduling problem”, Eur. J. Oper. Res., 127, 394–407 (2000).
  • [48] R. Kolisch and S. Hartmann, “Experimental Investigation of Heuristics for Resource-Constrained Project Scheduling: An Update”, Eur. J. Oper. Res., 74(1), 23‒37 (2006).
  • [49] K. Bouleimen and H. Lecocq, “A new efficient simulated annealing algorithm for the resource constrained project scheduling problem and its multiple version”, Eur. J. Oper. Res., 149, 268‒281 (2003).
  • [50] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated annealing”, Science, 220, 671‒680 (1983).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cec80ad-7ffd-4031-9fca-81b420502550
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.