PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison the Adsorption Capacity of Ukrainian Tuff and Basalt with Zeolite–Manganese Removal from Water Solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Manganese is an undesirable element in tap water but is common in the groundwater. Several methods can be used for manganese removal, including adsorption. Mined rocks are commonly evaluated as adsorbents and it was the objective of this paper – to investigate the Ukrainian volcanic tuff and basaltic rock from the Ivanodolinsky quarry and compare it with Ukrainian zeolite as well as with literature data. The research was based on equilibrated batch tests at a temperature of 10°C and slightly acidic pH. The data were treated using Langmuir and Freundlich models in the linear form. The results indicated the spontaneous and favourable adsorption of manganese. The volcanic tuff was characterized by the highest adsorption capacity, twice higher than basalt and zeolite. The heterogeneity of the active adsorption sites on the tuff was also greater and resulted from the diversity of the mineral composition. Considering the literature data, the properties of tuff are worth further research.
Rocznik
Strony
161--168
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Water Supply, Water Disposal and Drilling Engineering, National University of Water and Environmental Engineering, Soborna 11, 33028 Rivne, Ukraine
  • Institute of Environmental Engineering, Warsaw University of Life Sciences–SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
autor
  • Institute of Environmental Engineering, Warsaw University of Life Sciences–SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
  • Institute of Environmental Engineering, Warsaw University of Life Sciences–SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
Bibliografia
  • 1. Al-Zboon K.K., Al-Smadi B.M., Al-Khawaldh S. 2016. Natural Volcanic Tuff-Based Geopolymer for Zn Removal: Adsorption Isotherm, Kinetic, and Thermodynamic Study. Water Air Soil Pollut 227, 248. https://doi.org/10.1007/s11270–016–2937–5
  • 2. Alemayehu E., Lennartz B. 2009. Virgin volcanic rocks: kinetics and equilibrium studies for the adsorption of cadmium from water. J Hazard Mater, 169, 395–401. doi:10.1016/j.jhazmat.2009.03.109.
  • 3. Alemayehu E., Lennartz B. 2010. Adsorptive removal of nickel from water using volcanic rocks. Appl Geochem, 25, 1596–1602. doi:10.1016/j.apgeochem.2010.08.009
  • 4. Cegłowski M., Schroeder G. 2015. Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions. Chem. Eng. J., 263, 402–411. doi:10.1016/j.cej.2014.11.047
  • 5. Gunawardhana B.P.N., Gunathilake C.A., Dayananda K.E.D.Y.T., Dissanayake D.M.S.N., Mantilaka M.M.M.G.P.G., Kalpage C.S., Rathnayake R.M.L.D., Rajapakse R.M.G., Manchanda A.S., Etampawala T.N.B., Weerasekara B.G.N.D., Fernando P.N.K., Dassanayake R.S. 2020. Synthesis of Hematite Nanodiscs from Natural Laterites and Investigating Their Adsorption Capability of Removing Ni2+ and Cd2+ Ions from Aqueous Solutions. J. Compos. Sci., 4, 57. doi.org/10.3390/jcs4020057
  • 6. Gupta S., Kumar D., Gaur J.P., 2009. Kinetic and isotherm modeling of lead(II) sorption onto some waste plant materials. Chemical Engineering Journal 148, 226–233. doi.org/10.1016/j.cej.2008.08.019
  • 7. Hamdaoui O., Naffrechoux E. 2007. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials 147(1–2), 381–94. doi:10.1016/j.jhazmat.2007.01.021
  • 8. Jiang J., Ma X., Xu L., Wang L., Liu G., Xu Q., Lu J., Zhang Y. 2015. Applications of chelating resin for heavy metal removal from wastewater. e-Polymers, 15(3), 161–167. doi.org/10.1515/epoly-2014–0192
  • 9. Korablev V. V., Chechevichkin A. V., Boricheva I. K., Samonin V. V. 2017. Structure and morphological properties of clinoptilolite modified by manganese dioxide. St. Petersburg Polytechnical University Journal: Physics and Mathematics 3, 63–70. doi.org/10.1016/j.spjpm.2017.03.001
  • 10. Kowal A.L., Świderska-Bróż M. 2007. Water treatment. Wydawnictwo Naukowe PWN, Warsaw, Poland. (in Polish)
  • 11. Kwon J. S., Yun S. T., Lee J. H., Kim S. O., Jo, H. Y. 2010. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. Journal of Hazardous Materials, 174(1–3), 307–313. doi.org/10.1016/j.jhazmat.2009.09.052
  • 12. Letterman R.D. 1999. Water Quality and Treatment: A Handbook of Community Water Supplies. American Water Works Association. McGraw-Hill, New York, NY, USA.
  • 13. Margeta K., Zabukovec Logar N., Šiljeg M., Farkaš A. 2013. Natural zeolites in water treatment – how effective is their use. Chapter 5 in Water treatment. Intech Open. http://dx.doi.org/10.5772/50738
  • 14. Melnychuk V., Trach Y., Kosinov V., Michel M., Reczek L. 2018. Research of the mineral complex and opportunities using basalts and tuffs of Ivandodolinsky quarry of the Rivne region in water treatment. Проблеми водопостачання, водовідведення та гідравліки, 30, 36–47. doi:10.32347/2524–0021.2018.30.36–47
  • 15. Michel M.M., Kiedryńska L. 2012. Usuwanie manganu(II) na chalcedonicie modyfikowanym tlenkiem manganu(IV). Przem. Chem., 91, 1416–1419.
  • 16. Petra L., Billik P., Melichová Z., Komadel P. 2017. Mechanochemically activated saponite as materials for Cu2+ and Ni2+ removal from aqueous solutions. Applied Clay Science 143, 22–28. doi.org/10.1016/j.clay.2017.03.012
  • 17. Reczek L., Michel M.M., Trach Y., Siwiec T., Tytkowska-Owerko M. 2020. The kinetics of manganese sorption on Ukrainian tuff and basalt–Order and diffusion models analysis. Minerals 10, 1065. doi.org/10.3390/min10121065
  • 18. Renu, Madhu Agarwal, Singh K., 2017. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination. 7 (4), 387–419. doi: doi.org/10.2166/wrd.2016.104
  • 19. Rhodes J. C. 2010. Properties and applications of zeolites. Science Progress, 93(3), 1–63. doi: 10.3184/003685010X12800828155007
  • 20. Rogov V.М., Regusz А.Ya., Tichonowa І.А. 2009. Особливості адсорбційних іонів важких металів із стічних вод природним клиноптилолітом. Вісн. Нац. ун-ту «Львів. Політехніка». № 655. С. 242–249
  • 21. Sekomo C.B., Rousseau D.P.L., Lens P.N.L. 2012. Use of Gisenyi Volcanic Rock for Adsorptive Removal of Cd(II), Cu(II), Pb(II), and Zn(II) from Wastewater. Water Air Soil Pollut 223, 533–547. doi.org/10.1007/s11270–011–0880-z
  • 22. Sen Gupta S., Bhattacharyya KG. 2011. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid Interface Sci. 162(1–2), 39–58. doi:10.1016/j.cis.2010.12.004
  • 23. Shuibo X., Chun Z., Xinghuo Z., Jing Y., Xiaojian Z., Jingsong W. 2009. Removal of uranium(VI) from aqueous solution by adsorption of hematite. Journal of Environmental Radioactivity 100, 162–166. doi:10.1016/j.jenvrad.2008.09.008
  • 24. Taffarel S.R., Rubio J. 2010. Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Minerals Engineering, 23, 1131–1138. doi:10.1016/j.mineng.2010.07.007
  • 25. Tekerlekopoulou A.G., Pavlou S., Vayenas D.V. 2013. Removal of ammonium, iron and manganese from potable water in biofiltration units: A review. J. Chem. Technol. Biotechnol. 88, 751–773. doi:10.1002/jctb.4031.
  • 26. Treybal R.E. 1981. Mass Transfer Operations, McGraw-Hill, New York.
  • 27. Ugwu M. I., Igbokwe A. O., 2019. Sorption of Heavy Metals on Clay Minerals and Oxides: A Review. In Advanced Sorption Process Applications; Edebali S. Ed., IntechOpen. doi: 10.5772/intechopen.80989
  • 28. Vries D., Bertelkamp C., Schoonenberg Kegel F., Hofs B., Dusseldorp J., Bruins J.H., de Vet W., van den Akker B. 2017. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. Water Res. 109, 35–45. doi:10.1016/j.watres.2016.11.032
  • 29. Zhou C. H., Zhou Q., Wu Q. Q., Petit S., Jiang X. C., Xia S. T., Li C. S., Yu W. H. 2019. Modification, hybridization and applications of saponite: An overview. Applied Clay Science 168, 136–154. doi. org/10.1016/j.clay.2018.11.002
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ce8c1fe-9a02-44e8-b442-60801dca8a7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.