PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of copper concentrate grade based on color features and least-squares support vector regression

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new method based on color features of microscopic image and least-squares support vector regression model (LS-SVR) is proposed for indirect measurement of copper concentrate grade. Red, green and blue (RGB), hue and color vector angle were extracted from color microscopic images of a copper concentrate sample and selected for the comparison. Three different estimation models based on LS-SVR were developed using RGB, hue, and color vector angle, respectively. A comparison of three models was carried out through a validation test. The best model was obtained for the hue giving a running time of 30.243 ms, root mean square error of 0.8644 and correlation coefficient value of 0.9997. The results indicated that the copper concentrate grade could be estimated by the LS-SVR model using the hue as input parameter with a satisfactory accuracy.
Rocznik
Strony
163--172
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • College of Information Management, Dezhou University, Dezhou, 250323, China
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 221116, China
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 221116, China
Bibliografia
  • 1. AN S., LIU W., VENKATESH S., 2007, Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression, Pattern Recognition, 40(8), 2154-2162.
  • 2. BONIFAZI G., MASSACCI P., MELONI A., 2000, Prediction of complex sulfide flotation performances by a combined 3D fractal and colour analysis of the froths, Minerals Engineering, 13(7), 737-746.
  • 3. BONIFAZI, G., MASSACCI P., MELONI A., 2002, A 3D froth surface rendering and analysis technique to characterize flotation processes, International Journal of Mineral Processing, 64( 2), 153-61.
  • 4. FORBES, G., 2007, Texture and bubble size measurements for modelling concentrate grade in flotation froth systems, PhD Thesis, University of Cape Town.
  • 5. FORD A., ROBERTS A, 1998, Colour space conversions, http://www. poynton. com/PDFs/coloureq. pdf.
  • 6. HAAVISTO O., KAARTINEN J., HYOTYNIEMI H., 2006, Optical spectrum based estimation of grades in mineral flotation, ICIT 2006, Industrial Technology, 2529-2534.
  • 7. HAAVISTO O., KAARTINEN J., HYOTYNIEMI H., 2008, Optical spectrum based measurement of flotation slurry contents, International Journal of Mineral Processing, 88(3), 80-88.
  • 8. HAMERS B., SUYKENS J.A.K., de MOOR B., 2002. Compactly supported RBF kernels for sparsifying the gram matrix in LS-SVM regression models, Artificial Neural Networks—ICANN 2002, Springer, 720-726.
  • 9. KAARTINEN J., HÄTÖNEN J., HYOTYNIEMI H., MIETTUNEN J., 2006, Machine-vision-based control of zinc flotation—a case study, Control Engineering Practice, 14(12), 1455-66.
  • 10. MALEWSKI J., KRZEMINSKA M., 2012, Dependence of mine revenue on the grade of copper concentrate, Physicochemical Problems of Mineral Processing, 48( 2), 545-554.
  • 11. MARAIS C., 2010, Estimation of concentrate grade in platinum flotation based on froth image analysis, PhD Thesis, University of Stellenbosch.
  • 12. MORAR S.H., FORBES G., HEINRICH G.S., BRADSHAW D.J., 2005, The use of a colour parameter in a machine vision system, Smart-Froth, to evaluate copper flotation performance at Rio Tinto’s Kennecott Utah Copper Concentrator, Centenary of Flotation Symposium, 147-151.
  • 13. NAKHAEI F., MOSAVI M.R., SAM A., VAGHEI Y., 2012, Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques, International Journal of Mineral Processing, Vol. 110, 140-154.
  • 14. NAKHAEI F., MOSAVI M.R., SAM A., 2013, Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm, International Journal of Mining Science and Technology, 23, 69-77.
  • 15. OESTREICH, J. M., TOLLEY W.K., RICE D.A., 1995, The development of a color sensor system to measure mineral compositions, Minerals Engineering, 8(1), 31-9.
  • 16. REN CH., YANG J., 2012, A novel color microscope image enhancement method based on HSV color space and curvelet transform, International Journal of Computer Science Issues, 9(6), 272-277.
  • 17. SUYKENS J.A.K, VANDEWALLE J., 1999, Least squares support vector machine classifiers, Neural processing letters, 9(3), 293-300.
  • 18. SUYKENS J.A.K., 2001, Nonlinear modelling and support vector machines, Instrumentation and Measurement Technology Conference, 1, 287-294.
  • 19. TASDEMIR A., KOWALCZUK P.B., 2014, Application of statistical process control for proper processing of the Fore-Sudetic Monocline copper ore. Physicochemical Problems of Mineral Processing, 50(1), 249–264.
  • 20. TKALCIC M., TASIC J.F., 2003, Colour spaces: perceptual, historical and applicational background, IEEE, 1, 304-308.
  • 21. YONG Z., KEJUN J., YUKUN W., 2012, Flotation concentrate grade prediction model based on RBF neural network & immune evolution algorithm, Proceedings of the 31st Chinese Control Conference, 3319-3323.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ce64d86-f79e-46fd-88c4-fc1bc3fe1f20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.