PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6mum with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume) at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.
Rocznik
Strony
73--78
Opis fizyczny
Bibliogr. 18 poz., il., tab., wykr.
Twórcy
autor
  • Wrocław University of Technology, Faculty of Mechanical Engineering, Chair of Foundry Engineering, Plastics and Automation, ul. Ignacego Łukasiewicza 5, 50-371 Wrocław, Poland
  • Wrocław University of Technology, Faculty of Mechanical Engineering, Chair of Foundry Engineering, Plastics and Automation, ul. Ignacego Łukasiewicza 5, 50-371 Wrocław, Poland
Bibliografia
  • [1] Shalaby, E.A.M., Churyumov, A.Y., Solonin, A.N. & Lotfy, A. (2016). Preparation and characterization of hybrid A359/(SiC+Si3N4) composites synthesized by stir/squeeze casting techniques. Materials Science & Engineering. A 674, 18-24.
  • [2] Jiang, J. & Wang, Y. (2015). Microstructure and mechanical properties of the rheoformed cylindrical part of 7075 aluminum matrix composite reinforced with nano-sized SiC particles. Materials and Design. 79, 32-41.
  • [3] Chou, S-N., Huang, J-L., Lii, D-F. & Lu, H-H. (2007). The mechanical properties and microstructure of Al2O3/aluminum alloy composites fabricated by squeeze casting. Journal of Alloys and Compounds. 436, 124-130.
  • [4] Konopka, Z., Łągiewka, M., Zyska, A. & Nadolski, M. (2009). Structural stability at elevated temperatures of the AlSi6Cu4 matrix composite with graphite particles. Archives of Foundry Engineering. 13(2), 57-60.
  • [5] Kaczmar, J.W., Granat, K., Kurzawa, A. & Grodzka, E. (2014). Physical Properties of Copper Based MMC Strengthened with Alumina. Archives of Foundry Engineering. 14(2), 85-90
  • [6] Shirvanimoghaddam, K., Khayyam, H., Abdizadeh, H., Akbari, M.K., Pakseresht, A.H., Abdi, F. Abbasi, A. & Naebe, M. (2016). Effect of B4C, TiB2 and ZrSiO4 ceramic particles on mechanical properties of aluminium matrix composites: Experimental investigation and predictive modeling. Ceramics International. 42, 6206-6220.
  • [7] Ni, D.R., Chen, D.L. Wang, D., Xiao, B.L. & Ma, Z.Y. (2014). Tensile properties and strain-hardening behaviour of friction stir welded SiCp/AA2009 composite joints. Materials Science & Engineering. A(608), 1-10.
  • [8] Tang, S.W., Liu, C., Yu, Y.C., Hu, J. & Kong, L.C. (2015). The microstructure and tensile properties of Al2O3-coated Al18B4O33 whisker reinforced AA2024 aluminum composite. Materials Chemistry and Physics. 149-150, 282-287.
  • [9] Kaczmar, J.W. & Kurzawa, A. (2012). The effect of α-alumina particles on the properties of EN AC-44200 Al alloy based composite materials. Journal of Achievements in Materials and Manufacturing Engineering. 55/1, 39-44.
  • [10] Rui-Fen, G., Ping, S., Shi-Xin, L, Alateng, S. & Qi-Chuan, J. (2017). High compressive strength in nacre-inspired Al−7Si−5Cu/Al2O3–ZrO2 composites at room and elevated temperatures by regulating interfacial reaction. Ceramics International. 43, 7369-7373.
  • [11] Shin, S.E., Ko, Y.J. & Bae, D.H. (2016). Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures. Composites. B 106, 66-73.
  • [12] Kurzawa, A. & Kaczmar, J.W. (2017). Bending Strength of EN AC-44200 – Al2O3 Composites at Elevated Temperatures. Archives of Foundry Engineering. 17(1), 103-108.
  • [13] Uematsu, Y., Tokaji, K. & Kawamura, M. (2008). Fatigue behaviour of SiC-particulate-reinforced aluminium alloy composites with different particle sizes at elevated temperatures. Composites Science and Technology. 68, 2785-2791.
  • [14] Mohan, T. & Manoharan, N. (2015). Experimental investigation of tensile and impact behavior of aluminium metal matrix composite for turbocharger. ARPN Journal of Engineering and Applied Sciences. 10/13, 5672-5674.
  • [15] Hindi, J., Achutha Kini, U.A., Sharma S.S., Gurumutry, B.M. & Gowri Shankar, M.C. (2015). Mechanical Characterization of Stir Cast Al 6063 Matrix SiC Reinforced Metal Matrix Composites. Mechanical and Materials Engineering.
  • [16] Ibrahim, M.F., Ammar, H.R., Samuel, A.M, Soliman, M.S. & Samuel, F.H. (2015). On the impact toughness of Al-15 vol. 5 B4C metal matrix composites. Composites. B 79, 83-94
  • [17] Bonello, F., Ceschini, L. & Garagnani, G.L. (1997). Mechanical and Impact Behaviour of (A1203)p/2014 and (A1203)p/6061 A1 Metal Matrix Composites in the 25-200C Range. Applied Composite Materials. 4, 173-185
  • [18] Ozden, S., Ekici, R. & Nair, F. (2006). Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites. A (38), 484-494.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ce6279c-95a3-4a08-a0c5-07f2ef5d44b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.