PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative evaluation of concrete constitutive models in blast loaded shaped structural units

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The displacement response of a cylindrical and an apsidal shaped structural unit under blast loading is compared in this study using the finite element code LS-DYNA utilizing two different concrete constitutive models, namely the Riedel-Hiermaier-Thoma (RHT) model and the Continuous Surface Cap Model (CSCM). The blast load generated by an emulsion explosive corresponding to six scaled distances is used for the study. The validation of the displacement response is carried out by utilizing the Newmark numerical integration procedure using the linear acceleration method. The unique apsidal shape in its displacement response performs better across all the simulations indicating superior blast resistance. CSCM model returns conservative values of displacements in the study. The study finds that the RHT model requires higher stress levels for consideration of dynamic strengths and hence returns lower displacement values for the instances considered in this simulation. This study recommends the use of an apsidal unit and the use of RHT constitutive model in the simulations.
Słowa kluczowe
Rocznik
Strony
521--536
Opis fizyczny
Bibliogr. 29 poz., il., tab.
Twórcy
  • Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, India
  • Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, India
Bibliografia
  • [1] I.E. Edri, D.Z. Yankelevsky, A.M. Remennikov, and O. Rabinovitch, "Combined theoretical and experimental study on the blast response of arching masonry walls”, International Journal of Impact Engineering, vol. 174, art. no. 104495, 2023, doi: 10.1016/j.ijimpeng.2023.104495.
  • [2] M. Kristoffersen, K.O. Hauge, A. Minoretti, and T. Borvik, “Experimental and numerical studies of tubular concrete structures subjected to blast loading”, Engineering Structures, vol. 233, art. no. 111543, 2021, doi: 10.1016/j.engstruct.2020.111543.
  • [3] C. Fallon and G.J. McShane, “Fluid-structure interactions for the air blast loading of elastomer-coated concrete”, International Journal of Solids and Structures, vol. 168, pp. 138-152, 2019, doi: 10.1016/j.ijsolstr.2019.03.017.
  • [4] P. Baranowski, M. Kucewicz, J. Malachowski, and P.W. Sielicki, “Failure behavior of a concrete slab perforated by a deformable bullet”, Engineering Structures, vol. 245, art. no. 112832, 2021, doi: 10.1016/j.engstruct.2021.112832.
  • [5] Y.E. Ibrahim and M. Almustafa, “Mitigation of blast load risk on reinforced concrete structures considering different design alternatives”, Archives of Civil Engineering, vol. 66 , no. 3 , pp. 225-238, 2020, doi: 10.24425/ace.2020.134394.
  • [6] S.A. Ismail, W. Raphael, E. Durand, F. Kaddah, and F. Geara, “Analysis of the structural response of Beirut port concrete silos under blast loading”, Archives of Civil Engineering, vol. 67, no. 3 , pp. 619-638, 2021, doi: 10.24425/ace.2021.138074.
  • [7] M.Kucewicz, P. Baranowski, L. Mazurkiewicz, and J. Malachowski, “Comparison of selected blasting constitutive models for reproducing the dynamic fragmentation of rock”, International Journal of Impact Engineering, vol. 173, art. no. 104484, 2023, doi: 10.1016/j.ijimpeng.2022.104484.
  • [8] C. Reifarth, R. Castedo, A.P. Santos, M. Chiquito, L.M. Lopez, A. Perez-Caldentey, S. Martinez-Almajano, and A. Alanon, “Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads”, International Journal of Impact Engineering, vol. 156, art. no. 103939, 2021, doi: 10.1016/j.ijimpeng.2021.103939.
  • [9] M. Teich and N. Gebbeken, “Analysis of FSI effects of blast loaded flexible structures”, Engineering Structures, vol. 55, pp. 73-79, 2013, doi: 10.1016/j.engstruct.2011.12.003.
  • [10] P. Baranowski, J. Malachowski, and L. Mazurkiewicz, “Local blast wave interaction with tire structure”, Defence Technology, vol. 16, no. 3, pp. 520-529, 2020, doi: 10.1016/j.dt.2019.07.021.
  • [11] L. Mazurkiewicz, J. Malachowski, and P. Baranowski, “Optimization of protective panel for critical supporting elements”, Composite Structures, vol. 134, pp. 493-505, 2015, doi: 10.1016/j.compstruct.2015.08.069.
  • [12] J. Li, C. Wu, and H. Hao, “An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads”, Materials & Design, vol. 82, pp. 64-76, 2015, doi: 10.1016/j.matdes.2015.05.045.
  • [13] M. Li, Z. Zong, H. Hao, X. Zhang, J. Lin, and G. Xie, “Experimental and numerical study on the behavior of CFDST columns subjected to close-in blast loading”, Engineering Structures, vol. 185, pp. 203-220, 2019, doi: 10.1016/j.engstruct.2019.01.116.
  • [14] X. Lin, Y.X. Zhang, and P.J. Hazell, “Modelling the response of reinforced concrete panels under blast loading”, Materials & Design, vol. 56, pp. 620-628, 2014, doi: 10.1016/j.matdes.2013.11.069.
  • [15] L. Mao, S.J. Barnett, A. Tyas, J. Warren, G.K. Schleyer, and S.S. Zaini, “Response of small scale ultra high performance fibre reinforced concrete slabs to blast loading”, Construction and Building Materials, vol. 93, pp. 822-830, 2015, doi: 10.1016/j.conbuildmat.2015.05.085.
  • [16] G. Thiagarajan, A.V. Kadambi, S. Robert, and C.F. Johnson, “Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads”, International Journal of Impact Engineering, vol. 75, pp. 162-73, 2015, doi: 10.1016/j.ijimpeng.2014.07.018.
  • [17] N. Gebbeken and T. Döge, “Explosion protection – Architectural design, urban planning and landscape planning”, International Journal of Protective Structures, vol. 1, no. 1, pp. 1-21, 2010, doi: 10.1260/2041-4196.1.1.1.
  • [18] M. Barakat and J.G. Hetherington, “New architectural forms to reduce the effects of blast waves and fragments on structures”, in Proceedings of the International Conference on Structures under Shock and Impact, June 1998, Thessaloniki, Greece. Southampton: WIT Press, 1998, pp. 53-62.
  • [19] N. Rouzsky, “Blast-resistant control buildings”, Structural Safety, vol. 5, no. 4, pp. 253-266, 1988, doi: 10.1016/0167-4730(88)90027-6.
  • [20] T. Borrvall and W. Riedel, “The RHT concrete model in LS-DYNA”, in Proceedings of the 8th European LS-DYNA Users Conference, May 2011, Strasbourg. [Online]. Available: https://www.dynalook.com/conferences/8theuropean-ls-dyna-conference/session-12/Session12_Paper1.pdf. [Accessed: 18 Aug. 2023].
  • [21] Y.D. Murray, Users manual for LS-DYNA concrete material model 159, Publication no. FHWA-HRT-05-062. McLean, VA, USA: US Department of Transportation, Federal Highway Administration, 2007.
  • [22] LS DYNA – Keyword User’s Manual R13: Livermore Software Technology, Livermore, California, USA, 2021.
  • [23] Superpower 90 – Solar group packaged explosives: Solar Industries India Limited, Nagpur, India.
  • [24] J. Henrych, The dynamics of explosion and its use. Amsterdam, Netherlands: Elsevier Scientific Publishing Company, 1979.
  • [25] ASCE, Design of blast-resistant buildings in petrochemical facilities. Reston, VA, USA: American Society of Civil Engineers, 2010.
  • [26] UFC 3-340-02, Structures to resist the effects of accidental explosions. Washington DC, USA: US Department of Defense, 2008.
  • [27] R.M. Brannon and S. Leelavanichkul, Survey of Four Damage Models of Concrete. Albuquerque, NM, USA: Sandia National Laboratories, 2009.
  • [28] D. Cormie, G. Mays, and P. Smith, Blast effects on buildings. London, UK: ICE Publishing, 2012.
  • [29] W.E. Baker, Explosions in air. Austin, TX, USA: University of Texas Press, 1973.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ce5dcbf-6fe0-40ae-95f9-c2405c47a219
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.