PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compound negative binomial approximations for sums of random variables

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The negative binomial approximations arise in telecommunications, network analysis and population genetics, while compound negative binomial approximations arise, for example, in insurance mathematics. In this paper, we first discuss the approximation of the sum of independent, but not identically distributed, geometric (negative binomial) random variables by a negative binomial distribution, using Kerstan’s method and the method of exponents. The appropriate choices of the parameters of the approximating distributions are also suggested. The rates of convergence obtained here improve upon, under certain conditions, some of the known results in the literature. The related Poisson convergence result is also studied. We then extend Kerstan’s method to the case of compound negative binomial approximations and error bounds for the total variation metric are obtained. The approximation by a suitable finite signed measure is also studied. Some interesting special cases are investigated in detail and a few examples are discussed as well.
Rocznik
Strony
205--226
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Department of Mathematics, Indian Institute of Technology Bombay Powai, Mumbai-400076
autor
  • Department of Mathematics, Indian Institute of Technology Bombay Powai, Mumbai-400076
Bibliografia
  • [1] C. D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, third edition, Academic Press, San Diego, CA, 1998.
  • [2] A. D. Barbour, Multivariate Poisson-binomial approximation using Stein’s method, in: Stein’s Method and Applications, Singapore Univ. Press, Singapore 2004, pp. 131-142.
  • [3] A. D. Barbour and P. Hall, On the rate of Poisson convergence, Math. Proc. Cambridge Philos. Soc. 95 (3) (1984), pp. 473-480.
  • [4] A. D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford Univ. Press, New York 1992.
  • [5] T. C. Brown and M. J. Phillips, Negative binomial approximation with Stein’s method, Methodol. Comput. Appl. Probab. 1 (4) (1999), pp. 407-421.
  • [6] T. C. Brown and A. Xia, Stein’s method and birth-death processes, Ann. Probab. 29 (3) (2001), pp. 1373-1403.
  • [7] V. Čekanavičius, Estimates in total variation for convolutions of compound distributions, J. London Math. Soc. (2) 58 (3) (1998), pp. 748-760.
  • [8] V. Čekanavičius and B. Roos, Two-parametric compound binomial approximations, Liet. Mat. Rink. 44 (4) (2004), pp. 443-466; translation in: Lithuanian Math. J. 44 (4) (2004), pp. 354-373.
  • [9] V. Čekanavičius and B. Roos, Compound binomial approximations, Ann. Inst. Statist. Math. 58 (1) (2006), pp. 187-210.
  • [10] V. Čekanavičius and B. Roos, An expansion in the exponent for compound binomial approximations, Liet. Mat. Rink. 46 (1) (2006), pp. 67-110; translation in: Lithuanian Math. J. 46 (1) (2006), pp. 54-91.
  • [11] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer, New York 1988.
  • [12] S. Drekic and G. E. Willmot, On the moments of the time of ruin with applications to phase-type claims, N. Am. Actuar. J. 9 (2) (2005), pp. 17-30.
  • [13] J. Grandell, Aspects of Risk Theory, Springer, New York 1991.
  • [14] J. Kerstan, Verallgemeinerung eines Satzes von Prochorow und Le Cam, Z. Wahrsch. Verw. Gebiete 2 (1964), pp. 173-179.
  • [15] A. Y. Khintchine, Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Springer, Berlin 1933.
  • [16] L. Le Cam, An approximation theorem for the Poisson binomial distribution, Pacific J. Math. 10 (1960), pp. 1181-1197.
  • [17] T. Mikosch, Non-life Insurance Mathematics, Springer, Berlin 2004.
  • [18] H. H. Panjer and G. E. Willmot, Finite sum evaluation of the negative binomialexponential model, Astin Bull. 12 (2) (1981), pp. 133-137.
  • [19] B. Roos, On the rate of multivariate Poisson convergence, J. Multivariate Anal. 69 (1) (1999), pp. 120-134.
  • [20] B. Roos, Kerstan’s method for compound Poisson approximation, Ann. Probab. 31 (4) (2003), pp. 1754-1771.
  • [21] B. Roos, Poisson approximation of multivariate Poisson mixtures, J. Appl. Probab. 40 (2) (2003), pp. 376-390.
  • [22] B. Roos, Improvements in the Poisson approximation of mixed Poisson distributions, J. Statist. Plann. Inference 113 (2) (2003), pp. 467-483.
  • [23] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill, New York 1987.
  • [24] P. Vellaisamy and B. Chaudhuri, Poisson and compound Poisson approximations for random sums of random variables, J. Appl. Probab. 33 (1) (1996), pp. 127-137.
  • [25] P. Vellaisamy and B. Chaudhuri, On compound Poisson approximation for sums of random variables, Statist. Probab. Lett. 41 (2) (1999), pp. 179-189.
  • [26] P. Vellaisamy and S. Sankar, A unified approach for modeling and designing attribute sampling plans for monitoring dependent production processes, Methodol. Comput. Appl. Probab. 7 (3) (2005), pp. 307-323.
  • [27] P. Vellaisamy and N. S. Upadhye, On the negative binomial distribution and its generalizations, Statist. Probab. Lett. 77 (2) (2007), pp. 173-180.
  • [28] Y. H. Wang, Coupling methods in approximations, Canad. J. Statist. 14 (1) (1986), pp. 69-74.
  • [29] Y. H. Wang, From Poisson to compound Poisson approximations, Math. Sci. 14 (1) (1989), pp. 38-49.
  • [30] H.-J. Witte, A unification of some approaches to Poisson approximation, J. Appl. Probab. 27 (3) (1990), pp. 611-621.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ce46651-f545-48fa-b359-4ded8c081f4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.