PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silniki o zapłonie samoczynnym mieszanki homogenicznej kluczem do dalszego rozwoju tłokowych silników spalinowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Homogeneous mixture CI engines as a key to the further development of IC piston engines
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono syntetycznie sposoby zapłonu mieszanki paliwowo-powietrznej w silnikach spalinowych wraz z charakterystyką ich kluczowych wad oraz zalet, problematyką ich stosowania oraz możliwością rozwoju. Dalszy rozwój tłokowych silników będzie wymagał drastycznego ograniczenia emisji szkodliwych składników spalin oraz dwutlenku węgla będącego najistotniejszym gazem cieplarnianym emitowanym przez silniki spalinowe. Z tego powodu zmianom muszą ulec nie tylko same silniki spalinowe, lecz także przede wszystkim stosowane paliwa. Aby były najskuteczniejsze, powinno się wykorzystywać samozapłon homogenicznej mieszanki paliwowo-powietrznej, co przy dzisiejszym stanie rozwoju technicznego nie jest możliwe w sposób pozwalający na realizację najbardziej zaawansowanych sposobów samozapłonu. W literaturze zagranicznej można znaleźć wiele publikacji dotyczących różnych sposobów zapłonu samoczynnego (ZS) w silnikach spalinowych, w tym zapłonu samoczynnego w silnikach dwupaliwowych. W literaturze krajowej nie ma jednak na ten temat wielu pozycji i choć można znaleźć prace dotyczące zapłonu samoczynnego w silnikach jednopaliwowych [1-10], to temat dwupaliwowego zasilania silników o ZS nie jest zbyt obszernie opisany. Z tego powodu godne uwagi wydaje się opublikowanie artykułu poruszającego ten istotny dziś temat.
EN
The article presents synthetically the methods of ignition of the air-fuel mixture in Internal Com-bustion (IC) engines along with the characteristics of their advantages and disadvantages, the problems of their use and the possibility of development. The further development of piston engines will require a drastic reduction in the emission of harmful exhaust components and carbon dioxide, which is the most important greenhouse gas emitted by IC engines. For this reason, not only the engines themselves must be changed but fuels as well. For the most effective use of them, self-ignition of a homogeneous fuel-air mixture should be implemented. In the present state of technical development is not possible to widespread use the most ad-vanced ways of self-ignition methods. Typical homogeneous charge compression ignition (HCCI), where an engine uses only one type of the fuel and correctly self-ignite in the full scope of work is still not implemented in a serial production. In the foreign literature, there is a significant number of publications on various methods of Compression Igni-tion (CI) in IC engines, including IC in Dual Fuel (DF) engines. The Polish literature, however, is extremely sparse in this matter, and one can find a number of works on CI in single-fuel engines [1-10], but the topic of DF fueling is not too extensively described. For this reason, it seems important to publish an article on this important topic today
Rocznik
Strony
15--58
Opis fizyczny
Bibliogr. 81 poz., schem., wykr.
Twórcy
  • Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, Instytut Pojazdów Mechanicznych i Transportu, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] EU proposes radical „Fit for 55” climate action plan, 14.07.2021, strona DieselNet, https://dieselnet.com/news/2021/07eu.php [dostęp: 19.12.2021].
  • [2] Shalk S., Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells, U.S. Department of Energy Office of Transportation Technologies, 1000 Independence Avenue, S.W. Washington, 2000.
  • [3] Dahodwala M., Joshi S., Koehler E., Franke M., Tomazic D., Naber Y., Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions, SAE International, USA, 2020.
  • [4] Firmansyah F., Aziz A.R.A., Heikal M.R., Panchatcharam N., Ezrann Z.Z.A., Reactivity Controlled Compression Ignition (RCCI) of Gasoline ‒ CNG Mixtures, [in:] Improvement Trends for Internal Combustion Engines, 2017.
  • [5] Kulkarni A.M., Stricker K., Blum A., Shaver G., PCCI Control Authority of a Modern Diesel Engine Outfitted with Flexible Intake Valve Actuation, Journal of Dynamic Systems Measurement and Control, 132, 5, 2010.
  • [6] Heywood J.B., Internal Combustion Engine Fundamentals, Second Edition, McGraw-Hill Education, 2018.
  • [7] Hacsi J., Oxygen Supplemented Homogeneous Charge Compression Ignition, Pueblo, USA, 2018.
  • [8] Ghadikolaei M.A., History of Gasoline Direct Compression Ignition (GDCI) Engine ‒ A Review, IJRET: International Journal of Research in Engineering and Technology, Department of Mechanical Engineering, A.M.U., Aligarh, U.P., India, 2014.
  • [9] Paykani A., Kakaee A., Rahnama P., Reitz R., Progress and recent trends in reactivity-controlled compression ignition engines, International Journal of Engine Research, 2015.
  • [10] Lee C., Lee K.H., Experimental study on the stratified combustion characteristics according to compression ratio and intake temperature in a dig engine, International Journal of Automotive Technology, 7, 6, 2006, 675-680.
  • [11] Luong M.B., Sankaran R., Yu G., H., Yoo C.S., On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions, Combustion and Flame 183, 2017.
  • [12] T. Pachiannan, Zhong W., Rajkumar S., He Z., Leng X., Wang Q., A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies, Applied Energy, 251, 113380, 2019.
  • [13] Luong M.B., Sankaran R., Yu G.H., Yoo C.S., On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions, Combustion and Flame, 183, 2017.
  • [14] Liab Y., Jiab M., Xuac L., Baia X.-S., Multiple-objective optimization of methanol/diesel dual-fuel engine at low loads: A comparison of reactivity controlled compression ignition (RCCI) and direct dual fuel stratification (DDFS) strategies, FUEL, vol. 262, 2020.
  • [15] U. of Wisconsin RCCI combustion work progressing; modeled 53% gross indicated efficiency in a lightduty engine could result in 2× fuel savings compared to SI gasoline, Green Car Mechanism, 2011.
  • [16] Hairuddin A.A., Wandel A.P., Yusaf T., A homogeneous charge compression ignition engine: an introduction, 3rd Malaysian Postgraduate Conference MPC2013, Australia, Sydney 2013.
  • [17] Storey J.M., Curran S.J., Lewis S.A., Barone T.L., Dempsey A.B., Moses-Debusk M., Hanson R.M., Prikhodko V.Y., Northrop W.F., Evolution and current understanding of physicochemical characterization of particulate matter from reactivity controlled compression ignition combustion on a multicylinder light-duty engine, International Journal of Engine Research, 18, 5-6, 2016.
  • [18] Storey J., ORNL Team further characterizes PM from RCCI combustion; possible different PM formation process than conventional diesel, Green Car Congress, 2013.
  • [19] Burke J., A Commercial First for RCCI Retrofits, Diesel & Gas Turbine WorldWide, 2020.
  • [20] US Patent Application 20140283784: Control Device of Spark-Ignition Engine, 2013.
  • [21] Howard B., Mazda’s 2019 Breakthrough: a Diesel Engine That Runs on Gasoline, ExtremeTech, 2017.
  • [22] Mazda SPCCI uses spark plug as HCCI control factor; “air piston” to enhance compression, Green Car Congress, 2017.
  • [23] Robertson D., Prucka R., A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies, 14th International Conference on Engines & Vehicles, 2019.
  • [24] Wajand A., Silniki o zapłonie samoczynnym, WNT, Warszawa 1988.
  • [25] Luft S., Dwupaliwowy silnik o zapłonie samoczynnym zasilany mieszaniną gazów propan-butan (LPG) i olejem napędowym, Monografie, Politechnika Radomska, Radom 2002.
  • [26] Sowa A., Samochodowe instalacje zasilania gazem, Kraków 2007.
  • [27] HCNG, hasło w Wikipedii, http://en.wikipedia.org/wiki/HCNG [dostęp: 19.12.2021].
  • [28] Majczak A., Barański G., Sochaczewski R., Siadkowska K., CNG injector research for dual fuel engine, Advances in Science and Technology – Research Journal, 11, 1, 2017.
  • [29] Kasedorf J., Zasilanie wtryskowe benzyną, Wydawnictwa Komunikacji i Łączności, Warszawa 1989.
  • [30] Kowalewicz A., Adaptacja silnika wysokoprężnego do zasilania gazem naturalnym, Wydawnictwo Politechniki Krakowskiej, Czasopismo Techniczne, 105, 7-M, 2008, 67-78.
  • [31] Weichai Westport secures Chinese certification for WP12 natural gas engine powered by HPDI 2.0, Green Car Congress, 2020.
  • [32] Dostęp online z: https://investors.wfsinc.com/news/news-details/2013/Westport-Unveils-Next-Generation-High-Pressure-Direct-Injection-Westport-HPDI-20-System/default.aspx , [dostęp: 19.12.2021].
  • [33] Strona Westport Fuel Systems, http://www.westport.com, [dostęp: 19.12.2021].
  • [34] Westport updates HPDI 2.0 dual fuel system with new Delphi injectors, upgraded LNG storage and supply, Green Car Congress 2014.
  • [35] Westport unveils next-generation High Pressure Direct Injection (HPDI 2.0) natural gas system for HD trucks, Green Car Congress 2013.
  • [36] Barth J., Ripperger S., Hörhammer C., Flierl R., Solubility of Natural Gas in Diesel Fuel, Chemical Engineering Technology, 39, 8, 2016.
  • [37] Wahhab H.A., Mhadi I.A., Aziz A.A.R., Heikal M.R., AL-Kayiem H.H., Modeling of a Spray of Diesel Fuel with Dissolved Liquefied Natural Gas, Asian Journal of Applied Sciences, 10, 2, 2016, 88-95.
  • [38] Misra A., Yadav M., Sharma A., Singh G., Methane–Diesel Dual Fuel Engine: A Comprehensive Review, Proceedings of International Conference in Mechanical and Energy Technology, 2020.
  • [39] Shihadeh A., Hochgreb S., Diesel Engine Combustion of Biomass Pyrolysis Oils, Energy Fuels, 14, 2, 2000, 260-274.
  • [40] Djermouni M., Ouadha A., Thermodynamic analysis of an HCCI engine based system running on natural gas, Energy Conversion Management, 88, 2014, 723-73.
  • [41] Wei L., Geng P., A review on natural gas/diesel dual fuel combustion, emissions and performance, Fuel Processing Technology, 142, 2016, 264-278.
  • [42] WestportTM HPDI technology delivers CO2 reductions for long haul transportation, Westport Fuel Systems, https://wfsinc.com/our-solutions/hpdi-2.0, [dostęp: 20.12.2021].
  • [43] Djermouni M., Ouadha A., Comparative assessment of LNG and LPG in HCCI engines, Energy Procedia, 139, 2017, 254-259.
  • [44] Ma F., Naeve N., Wang M., Jiang L., Chen R., Zhao S., Hydrogen-Enriched Compressed Natural Gas as a Fuel for Engines, State Key Laboratory of Automotive Safety and Energy Tsinghua University, China, 2010.
  • [45] Mariani A., Hydrogen ‒ Natural Gas (HCNG) Mixtures as fuels in internal combustion engines, International workshow of Hydrogen and Fuel Cells, Orlean 2012.
  • [46] Pietkun-Greber I., Janka M., Analiza skutków oddziaływania wodoru na metale i stopy, Chemia-Dydaktyka-Ekologia-Metrologia, 16, 1-2, 2011, 75-78.
  • [47] Szamrej A.G., Wodór jako paliwo wspomagające spalanie w silnikach tłokowych, (praca inżynierska), Wojskowa Akademia Techniczna, Warszawa 2014.
  • [48] Kałdoński T., Koliński K., Pszczółkowski J., Sterowanie procesem zapłonu paliw w warunkach rozruchu silnika o zapłonie samoczynnym, Journal of KONES Internal Combustion Engines, vol. 10, No 1-2, 2003.
  • [49] Karczewski M., Chojnowski J., Szamrej G., A Review of Low-CO2 Emission Fuels for a Dual-Fuel RCCI Engine, Energies,14,16, 2021, 5067.
  • [50] Molenda J., Gaz ziemny: paliwo i surowiec, Wydawnictwa Naukowo-Techniczne, Warszawa 1993.
  • [51] Virdi K., Concept of reactivity controlled compression ignition a single cylinder automotive engine, a thesis report, Mechanical Engineering Department, Thapar Institute of Engineering & Technology, 2019.
  • [52] Stelmasiak Z., Larisch J., Pietras D., Wpływ dodatku gazu ziemnego na wybrane parametry pracy silnika Fiat 1.3 MultiJet zasilanego dwupaliwowo, Combustion Engines, 162, 3, 2015, 672- 682.
  • [53] Reitz R.D., Reciprocating Internal Combustion Engines, Engine Research Center, University of Wisconsin-Madison, Princeton CEFRC, 2014.
  • [54] Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, Wartości opałowe (WO) i wskaźniki emisji CO2 (WE) w roku 2016 do raportowania w ramach Systemu Handlu Uprawnieniami do Emisji za rok 2019, KOBIZE, Warszawa 2018.
  • [55] Dziubak T., Dziubak S.D., Experimental Study of Filtration Materials Used in the Car Air Intake, Materials, 13, 16, 2020, 3498.
  • [56] Knight S., Real world RCCI: Reactively Controlled Ignition goes live, The Motorship Marine Technology, 2020, https://www.motorship.com/news101/ships-equipment/1346366.article [dostęp: 18.05.2022].
  • [57] Burke J., Diesel & Gas Turbine WORLDWIDE, Covering large horsepower prime movers in the power generation, marine propulsion, oil & gas and rail market, 2020, https://www.dieselgasturbine. com/news/A-Commercial-First-For-RCCI-Retrofits/7011943.article [dostęp: 19.05.2022].
  • [58] Szamrej G., Karczewski M., Chojnowski J., A review of technical solutions for RCCI engines, Combustion Engines, 189, 2, 2022, 36-46.
  • [59] Mikulski M., Ramesh S., Bekdemir C., Reactivity Controlled Compression Ignition for clean and efficient ship propulsion, Elsevier, Energy, 182, 2019, 1173-1192.
  • [60] Klimstra J., Hotakainen M., Smart Power Generation, 3rd ed., Avain Publishers, Helsinki 2011.
  • [61] Kuiken K., Gas- and dual-fuel engines for ship propulsion, power plants and cogeneration, Book III: Operation and maintenance, Target Global Energy Training, PJ Onnen, The Netherlands, 2016, 528-529.
  • [62] IMO, The 2020 global sulphur limit n.d., http://www.imo.org/en/MediaCentre/HotTopics/GHG/Documents/2020 sulphur limit FAQ 2018.pdf, [dostęp: 27.05.2022].
  • [63] Hoek D., Shell: IMO 2020 readiness ‒ fuels and lubricants, Alternative Maritime Fuels and Ship Emissions Seminar, Delft 2018.
  • [64] Kuiken K., Gas- and dual-fuel engines for ship propulsion, power plants and cogeneration, Book I: Principles, Target Global Energy Training, PJ Onnen, The Netherlands, 2016, 46-84.
  • [65] Mattarelli E., Rinaldini C.A., Marmorini L., Caprioli S., Legrottaglie F., Scrignoli F., 2-Stroke RCCI Engines for Passenger Cars, Energies, 15, 2022, 1173..
  • [66] Mikulski M., Balakrishnan P.R., Hunicz J., Natural gas-diesel reactivity controlled compression ignition with negative valve overlap and in-cylinder fuel reforming, Appl Energy, 254, 2019, DOI: 10.1016/j.apenergy.2019.113638.
  • [67] Elkelawya M., Shenawya E.A.E., Mohamed S.A., Elarabib M.M., Bastawissia H.A.-E., Impacts of EGR on RCCI engines management: A comprehensive review, Energy Conversion and Management: X, 14, 2022, DOI: 10.1016/j.ecmx.2022.100216.
  • [68] Dadsetan M., Chitsazb I., Amania E., A study of swirl ratio effects on the NOx formation and mixture stratification in an RCCI engine, Energy, 182, 2019, 1100-1114.
  • [69] Aydin H., An innovative research on variable compression ratio in RCCI strategy on a power generator diesel engine using CNG-safflower biodieselmy, Energy, 231, 2021, 121002.
  • [70] Gholami A., Jazayeri S.A., Esmaili Q., A detail performance and CO2 emission analysis of a very large crude carrier propulsion system with the main engine running on dual fuel mode using hydrogen/diesel versus natural gas/diesel and conventional diesel engines, Process Safety and Environmental Protection, 163, 2022, 621-635.
  • [71] Karczewski M., Szamrej G., Chojnowski J., Experimental Assessment of the Impact of Replacing Diesel Fuel with CNG on the Concentration of Harmful Substances in Exhaust Gases in a Dual Fuel Diesel Engine, Energies, 15, 2022, 4563, https://doi.org/10.3390/en15134563.
  • [72] Been J., Breakthrough LNG deployment in Inland Waterway, Transport, Activity 2.3. Evaluation report pilot test MTS Argonon, Deen Shipping, Rotterdam, Holandia, 2020.
  • [73] Pillot D., Guiot B., Cottier P.L., Perret P., Tassel P., Exhaust emissions from in-service inland waterways vessels, TAP 2016, 21st International Transport and Air Pollution, Conference, May 2016, LYON, France, 205-225.
  • [74] Willems F., Kupper F., Ramesh S., Indrajuana A., Doosje E., Coordinated air-fuel path control in a diesel-E85 RCCI engine, SAE Technical Paper, 2019.
  • [75] Harari P.A., Banapurmath N.R., Yaliwal V.S., Yunus Khan T.M., Soudagare M.E.M., Sajjan A.M., Experimental studies on performance and emission characteristics of reactivity controlled compression ignition (RCCI) engine operated with gasoline and Thevetia Peruviana biodiesel, Renewable Energy, 160, 2020.
  • [76] Paykania A., Garcia A., Shahbakhtic M., Rahnamad P., Reitz R.D., Reactivity controlled compression ignition engine: Pathways towards commercial viability, Applied Energy, 282 A, 2021, DOI: 10.1016/j.apenergy.2020.116174.
  • [77] Reitz R.D., Duraisamy A.G., Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines, Progress in Energy and Combustion Science, 46, 2015, 12-71.
  • [78] Singh A.P., Kumar V., Agarwal A.K., Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes, Appl Energy, 278, 24, 2020, DOI:10.1016/j.apenergy.2020.115644.
  • [79] Benajes J., García A., Monsalve-Serrano J., Villalta D., Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties, Energy Convers Manage, 157, 2018, 277-287.
  • [80] Valladolid P.G., Tunestål P., Monsalve-Serrano J., García A., Hyvönen J., Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine, Energy Convers Manage,149, 2017, 192-205.
  • [81] Kuiken K., Gas- and dual-fuel engines for ship propulsion, power plants and cogeneration. Book II: Engine systems and environment, Target Global Energy Training, PJ Onnen, The Netherlands, 2016, 496-544.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ce230d8-c479-45a9-a331-58b516e1d682
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.